a(b−c)3+b(c−a)3+c(a−b)3=
=a(b3−3b2c+3bc2−c3)+b(c3−3c2a+3ca2−a3)+c(a3−3a2b+3ab2−b3)=
=ab3−3ab2c+3abc2−ac3+bc3−3abc2+3a2bc−ba3+ca3−3a2bc+3ab2c−cb3=ab3−ac3+bc3−ba3+ca3−cb3
a+b+c=0⇒c=−a−b
ab3−ac3+bc3−ba3+ca3−cb3=ab3−ba3+(−a+b)c3+c(a3−b3)=
=ab3−ba3+(−a+b)(−a−b)3+(−a−b)(a3−b3)=
=ab3−ba3+(−a+b)(−a3−3a2b−3ab2−b3)−a4+ab3−ba3+b4=
=−a4+2ab3−2ba3+b4+(a4+3a3b+3a2b2+ab3−ba3−3a2b2−3ab3−b4)=0
a(b−c)3+b(c−a)3+c(a−b)3=0
Comments