Question #100874
If a,b,c are real numbers and a+b+c=0, What's a(b-c)^3 + b(c-a)^3 + c(a-b)^3 ?
1
Expert's answer
2019-12-31T06:54:36-0500

a(bc)3+b(ca)3+c(ab)3=a(b-c)^3+b(c-a)^3+c(a-b)^3=

=a(b33b2c+3bc2c3)+b(c33c2a+3ca2a3)+c(a33a2b+3ab2b3)== a(b^3−3b^2c+3bc^2−c^3)+b(c^3−3c^2a+3ca^2−a^3)+c(a^3−3a^2b+3ab^2−b^3)=

=ab33ab2c+3abc2ac3+bc33abc2+3a2bcba3+ca33a2bc+3ab2ccb3=ab3ac3+bc3ba3+ca3cb3=ab ^3 −3ab ^2 c+3abc ^2 −ac ^3 + bc ^3 −3abc ^2 +3a ^2 bc−ba ^3 +ca ^3 −3a ^2 bc+3ab ^2 c−cb ^3 =a b ^3 −ac ^3 +bc ^3 −ba ^3 +ca ^3 −cb ^3


a+b+c=0c=aba+b+c=0⇒c=−a−b


ab3ac3+bc3ba3+ca3cb3=ab3ba3+(a+b)c3+c(a3b3)=ab ^3 −ac ^3 +bc ^3 −ba ^3 +ca ^3 −cb ^3=ab ^3 −ba ^3 +(−a+b)c ^3 +c(a ^3 −b ^3 )=

=ab3ba3+(a+b)(ab)3+(ab)(a3b3)==a b ^3 −ba ^3 +(−a+b)(−a−b) ^3 +(−a−b)(a ^3 −b ^3 )=

=ab3ba3+(a+b)(a33a2b3ab2b3)a4+ab3ba3+b4== ab ^3 −ba ^3 +(−a+b)(−a ^3 −3a ^2 b−3ab ^2 −b ^3 )−a ^4 +ab ^3 −ba ^3 +b ^4=

=a4+2ab32ba3+b4+(a4+3a3b+3a2b2+ab3ba33a2b23ab3b4)=0=-a ^4 +2ab ^3 −2ba ^3 +b ^4 +(a ^4 +3a ^3 b+3a ^2 b ^2 +ab ^3 −ba ^3 −3a ^2 b^2 −3ab ^3 −b ^4 )=0

a(bc)3+b(ca)3+c(ab)3=0a(b−c) ^3 +b(c−a) ^3 +c(a−b) ^3 =0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS