Let a - amount of apples, c - amount of children. Will compose a system of equations describing these two conditions.
"\\quad\\begin{cases} \\cfrac{a}{c-2} - \\cfrac{a}{c} = 1 \\\\\n\\cfrac{a}{c} - \\cfrac{a}{c+10} = 3\n\\end{cases}"
Will carry out the elementary transformations
"\\quad\\begin{cases} \\cfrac{ac-ac+2a}{c(c-2)} = 1 \\\\\n\\cfrac{ac+10a-ac}{c(c+10)} = 3\n\\end{cases}"
"\\quad\n\\begin{cases} 2a = c(c-2) \\qquad\\qquad\\qquad \\small\\text{(1)} \\\\\n10a = 3c(c+10) \\qquad\\qquad\\space \\small\\text{ (2)}\n\\end{cases}"
Will multiply the first equation by 5, equate the right sides of the equations and determine the "c" .
"\\quad 5c(c-2) = 3c(c+10)\\\\ \\quad5c-3c=30+10\\\\ \\quad c=\\cfrac{40}2\\\\ \\quad\\underline{c=20}"
Will substitute "c" in equation (1) and define the "a"
"\\quad2a = 20*(20 - 2)\\\\ \\quad a = \\cfrac12*20*18\\\\ \\quad\\underline{a = 180}"
Answer: 20 children, 180 apples.
Comments
Leave a comment