Let Rad R denote one of the two nilradicals, or the Jacobson radical, or the Levitzki radical of R.
For any ideal J ⊆ R such that Rad (R/J) = 0, show that J ⊇ Rad R.
Let Rad R denote one of the two nilradicals, or the Jacobson radical, or the Levitzki radical of R.
For any ideal I ⊆ Rad R, show that Rad (R/I) = (Rad R)/I.