Let R and S be rings. The direct product of R and S,
R ⊕ S = {(r, s) : r ∈ R, s ∈ S}
is a ring, where
(r1, s1) + (r2, s2) = (r1 + r2, s1 + s2)
(r1, s1) x (r2, s2) = (r1 x r2, s1 x s2)
(a) List the elements of Z2 ⊕ Z3 and Z3 ⊕ Z2.
(b) Are they structurally the same (that is isomorphic)? If so, how should an
element in Z2 ⊕ Z3 be identified in Z3 ⊕ Z2?