Since x is a nilpotent element, xn=0 for some positive integer n. Compute
(1+x)(1−x+x2−x3+⋯+(−x)n−1)=1+x−x−x2+x2+x3−⋯+(−1)n−1xn=1+(−1)n−1xn=1+(−1)n−10=1+0=1,i. e. there exists the right multiplicative inverse of 1+x. Obviously, we have the same left multiplicative inverse of 1+x and (1+x)−1=1−x+x2−x3+⋯+(−x)n−1. Hence we have proved that 1+x is a unit.
Let u be a unit of ring A. Then similarly we have
(u+x)u−1(1−u−1+u−2x2−u−3x3+⋯+(−ux)n−1)=uu−1+u−1x−u−1x+u−2x+⋯+(−u)n−1xn=1+(−u)n−1xn+1+(−u)n−10=1+0=1,i. e. there exists the multiplicative inverse (u+x)−1=u−1(1−u−1+u−2x2−u−3x3+⋯+(−ux)n−1). Hence, the sum of a nilpotent element and a unit is a unit.
Comments