Question #350971

1. Let x be a nilpotent element of a ring A. Show that 1 + x is a unit of A. Deduce 

that the sum of a nilpotent element and a unit is a unit. 


1
Expert's answer
2022-06-28T15:35:20-0400

Since xx is a nilpotent element, xn=0x^n = 0 for some positive integer nn. Compute

(1+x)(1x+x2x3++(x)n1)=1+xxx2+x2+x3+(1)n1xn=1+(1)n1xn=1+(1)n10=1+0=1,(1 + x)(1 - x + x^2 - x^3 + \dots + (-x)^{n - 1}) = 1 + x - x - x^2 + x^2 + x^3 - \dots + (-1)^{n - 1}x^n = 1 + (-1)^{n - 1}x^n = 1 + (-1)^{n - 1}0 = 1 + 0 = 1,i. e. there exists the right multiplicative inverse of 1+x1 + x. Obviously, we have the same left multiplicative inverse of 1+x1 + x and (1+x)1=1x+x2x3++(x)n1(1 + x)^{-1} = 1 - x + x^2 - x^3 + \dots + (-x)^{n - 1}. Hence we have proved that 1+x1 + x is a unit.


Let uu be a unit of ring AA. Then similarly we have

(u+x)u1(1u1+u2x2u3x3++(ux)n1)=uu1+u1xu1x+u2x++(u)n1xn=1+(u)n1xn+1+(u)n10=1+0=1,(u + x)u^{-1}(1 - u^{-1} + u^{-2}x^2 - u^{-3}x^3 + \dots + (-ux)^{n-1}) = uu^{-1} + u^{-1}x - u^{-1}x + u^{-2}x + \dots + (-u)^{n - 1}x^n = 1 + (-u)^{n - 1}x^n + 1 + (-u)^{n - 1}0 = 1 + 0 = 1,i. e. there exists the multiplicative inverse (u+x)1=u1(1u1+u2x2u3x3++(ux)n1)(u + x)^{-1} = u^{-1}(1 - u^{-1} + u^{-2}x^2 - u^{-3}x^3 + \dots + (-ux)^{n-1}). Hence, the sum of a nilpotent element and a unit is a unit.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS