Question #350796

2.10. Let H be the subgroup generated by two elements a, b of a group G. Prove that if ab = ba, then H is an abelian group.


1
Expert's answer
2022-06-22T12:32:00-0400

The elemtnts of HH are of the form: ai1bi2ai3aik1bika^{i_1}b^{i_2}a^{i_3}\cdots a^{i_k-1}b^{i_k} where i1,,ikZi_1,\dots, i_k\in\mathbb{Z} for some kk.


So let x,yHx,y\in H. Then we can write x=ai1bi2ai3aik1bikx=a^{i_1}b^{i_2}a^{i_3}\cdots a^{i_k-1}b^{i_k} and y=aj1bj2aj3ajk1bjky=a^{j_1}b^{j_2}a^{j_3}\cdots a^{j_k-1}b^{j_k}. Then xy=(ai1bik)(aj1bjk)xy=(a^{i_1}\cdots b^{i_k})(a^{j_1}\cdots b^{j_k}) since ab=baab=ba we can interchange each term in this multiplication, and obtain: xy=(aj1bjk)(ai1bik)=yxxy=(a^{j_1}\cdots b^{j_k})(a^{i_1}\cdots b^{i_k})=yx.

This implies HH is abelian.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS