a) Clearly aZ+bZ=ϕ. Let ak1+bl1, ak2+bl2 be two elements in aZ+bZ, where ki,li∈Z. We have (ak1+bl1)−(ak2+bl2)=a(k1−k2)+b(l1−l2)∈aZ+bZ as k1−k2,l1−l2∈Z. This implies aZ+bZ is a subgroup of Z.
b) Firstly a,b+7a∈aZ+bZ. Secondly, given any ak+bl∈aZ+bZ we can write ak+bl=a(k−7l)+(b+7a)l , this implies a and b+7a generate aZ+bZ.
Comments