Question #350795

2.9. Let a and b be integers.

(a) Prove that the subset aZ + bZ = {ak + bl | l, k ∈ Z } is a subgroup of Z.

(b) Prove that a and b + 7a generate the subgroup aZ + bZ.


1
Expert's answer
2022-06-22T09:36:24-0400

a) Clearly aZ+bZϕa\mathbb{Z}+b\mathbb{Z}\ne\phi. Let ak1+bl1ak_1+bl_1, ak2+bl2ak_2+bl_2 be two elements in aZ+bZ,a\mathbb{Z}+b\mathbb{Z}, where ki,liZk_i,l_i\in\mathbb{Z}. We have (ak1+bl1)(ak2+bl2)=a(k1k2)+b(l1l2)aZ+bZ(ak_1+bl_1)-(ak_2+bl_2)=a(k_1-k_2)+b(l_1-l_2)\in a\mathbb{Z}+b\mathbb{Z} as k1k2,l1l2Zk_1-k_2,l_1-l_2\in\mathbb{Z}. This implies aZ+bZa\mathbb{Z}+b\mathbb{Z} is a subgroup of Z\mathbb{Z}.


b) Firstly a,b+7aaZ+bZa,b+7a\in a\mathbb{Z}+b\mathbb{Z}. Secondly, given any ak+blaZ+bZak+bl\in a\mathbb{Z}+b\mathbb{Z} we can write ak+bl=a(k7l)+(b+7a)lak+bl=a(k-7l)+(b+7a)l , this implies aa and b+7ab+7a generate aZ+bZa\mathbb{Z}+b\mathbb{Z}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS