Question #324610

3. Let L: R₂ → R₂ be the linear transformation defined by L ([u¹, u₂]) = [u1, 0]


a. Is [0, 2] in Ker L?


b. Is [2,2] in Ker L?


C. Is [3,0] in range L?


d. Is [ 3,2] in range L?


e. Find Ker L.


£. Find Range L.


1
Expert's answer
2022-04-07T12:12:45-0400

KerL=vR2:L(v)=(0,0)KerL={v∈ℝ²: L(v)=(0,0)}


(a) L(0,2)=(0,0)L(0,2)=(0,0)


Hence, (0,2)KerL(0,2)∈KerL




(b) L(2,2)=(2,0)(0,0)L(2,2)=(2,0)≠(0,0)


Hence, (2,2)KerL(2,2)∉KerL


RngL=wR2:L(v)=W,vR2RngL={w∈ℝ²: L(v)=W, v∈ℝ²}




(c) L(3,b)=(3,0)L(3,b)=(3,0) for any bRb∈ℝ


Hence, (3,0)RngL(3,0)∈RngL




(d) There exist no (a,b)R2(a,b)∈ℝ² such that L(a,b)=(3,2)L(a,b)=(3,2)

Hence, (3,2)RngL(3,2)∉RngL




(e) L(a,b)=(a,0)=(0,0)L(a,b)=(a,0)=(0,0)


=>a=0=> a=0


Hence, KerL=(0,b)R2:bRKerL={(0,b)∈ℝ²: b∈ℝ}




(f) L(a,b)=(a,0)=(x,y)L(a,b)=(a,0)=(x,y)


=>x=a,y=0=> x=a, y=0


RngL=(a,0)R2:yRRngL={(a,0)∈ℝ²: y∈ℝ}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS