KerL=v∈R2:L(v)=(0,0)
(a) L(0,2)=(0,0)
Hence, (0,2)∈KerL
(b) L(2,2)=(2,0)=(0,0)
Hence, (2,2)∈/KerL
RngL=w∈R2:L(v)=W,v∈R2
(c) L(3,b)=(3,0) for any b∈R
Hence, (3,0)∈RngL
(d) There exist no (a,b)∈R2 such that L(a,b)=(3,2)
Hence, (3,2)∈/RngL
(e) L(a,b)=(a,0)=(0,0)
=>a=0
Hence, KerL=(0,b)∈R2:b∈R
(f) L(a,b)=(a,0)=(x,y)
=>x=a,y=0
RngL=(a,0)∈R2:y∈R
Comments