I=<x>+<3>={xp(x)+3q(x),p,q∈Z[x]}SupposeI={p(x)h(x),p∈Z[x]}forsomeh∈Z[x]Since3∈I,wehave3=h(x)p(x)forsomep,fromwhichh(x)∈{±1,±3}Ifh(x)=±1,wehave±1⋅h(x)=1∈I.Thisisfalsebecausexp(x)+3q(x)=1⇒3q(x)=1⇒q(x)=31∈/Z[x]Ifh(x)=±3,wehaveI={3p(x),p∈Z[x]},fromwhichx∈/I,whichisfalse.HencethereisnosuchhthatI={p(x)h(x),p∈Z[x]},whichmeansIisnotaprincipalideal
Comments
Leave a comment