Let us find aba−1 where
(i) a=(5,7,9), b=(1,2,3)
Since a−1=(5,9,7), it follows from the fact that the circles a and b are independent that
aba−1=(5,7,9)∘(1,2,3)∘(5,9,7)=(5,7,9)∘(5,9,7)∘(1,2,3)=(1)∘(1,2,3)=(1,2,3).
(ii) a=(1,2,5)(3,4), b=(1,4,5)
Since a−1=(1,5,2)(3,4), it follows that
aba−1=(1,2,5)(3,4)∘(1,4,5)∘(1,5,2)(3,4)=(1,3,4)(2,5)∘(1,5,2)(3,4)=(1,2,3)
Comments
Leave a comment