F ind aba -1 w here (i) a = (5 , 7 , 9) , b = (1 , 2, 3) (ii) a = (1 , 2,5)(3 , 4) , b = (1 , 4 , 5)
Let us find "aba^{ -1}" where
(i) "a = (5 , 7 , 9),\\ b = (1 , 2, 3)"
Since "a^{-1} = (5 , 9 , 7)," it follows from the fact that the circles "a" and "b" are independent that
"aba^{ -1}=(5 , 7 , 9)\\circ (1 , 2, 3) \\circ(5 , 9 , 7)=(5 , 7 , 9) \\circ(5 , 9 , 7)\\circ (1 , 2, 3)\\\\=(1)\\circ(1 , 2, 3)=(1 , 2, 3)."
(ii) "a = (1 , 2,5)(3 , 4) ,\\ b = (1 , 4 , 5)"
Since "a^{-1} = (1 , 5,2)(3 , 4)," it follows that
"aba^{ -1}=(1 , 2,5)(3 , 4) \\circ (1 , 4 , 5)\\circ (1 , 5,2)(3 , 4)\n=(1 , 3, 4)(2,5)\\circ (1 , 5,2)(3 , 4)\n\\\\=(1 , 2, 3)"
Comments
Leave a comment