We are to prove that the set S = { a + b 2 : a , b ∈ Z } \displaystyle
S=\{a+b\sqrt{2}:a,b\in\Z\} S = { a + b 2 : a , b ∈ Z } is a ring.
Let p = a 1 + b 1 2 , q = a 2 + b 2 2 , r = a 3 + b 3 2 p=a_1+b_1\sqrt{2},\ q=a_2+b_2\sqrt{2},\ r=a_3+b_3\sqrt{2} p = a 1 + b 1 2 , q = a 2 + b 2 2 , r = a 3 + b 3 2 belong to S S S , then
1] S S S is an abelian group under addition, meaning that:
− ( p + q ) + r = p + ( q + r ) -(p+q)+r=p+(q+r) − ( p + q ) + r = p + ( q + r )
we have:
( a 1 + b 1 2 + a 2 + b 2 2 ) + a 3 + b 3 2 = a 1 + b 1 2 + ( a 2 + b 2 2 + a 3 + b 3 2 ) (a_1+b_1\sqrt2+a_2+b_2\sqrt2)+a_3+b_3\sqrt2=a_1+b_1\sqrt2+(a_2+b_2\sqrt2+a_3+b_3\sqrt2) ( a 1 + b 1 2 + a 2 + b 2 2 ) + a 3 + b 3 2 = a 1 + b 1 2 + ( a 2 + b 2 2 + a 3 + b 3 2 )
− − p + q = q + p --p+q=q+p − − p + q = q + p
we have:
a 1 + b 1 2 + a 2 + b 2 2 = a 2 + b 2 2 + a 1 + b 1 2 a_1+b_1\sqrt2+a_2+b_2\sqrt2=a_2+b_2\sqrt2+a_1+b_1\sqrt2 a 1 + b 1 2 + a 2 + b 2 2 = a 2 + b 2 2 + a 1 + b 1 2
− − − --- − − − There is an element 0 = 0 + 0 2 0=0+0\sqrt{2} 0 = 0 + 0 2 in S S S if a 1 , b 1 = 0 a_1,\ b_1=0 a 1 , b 1 = 0 such that p + 0 = p p + 0 = p p + 0 = p
− − − − ---- − − − − For each p in S there exists −p in S such that p + (−p) = 0
we have:
a 1 + b 1 2 + ( − a 1 − b 1 2 ) = 0 a_1+b_1\sqrt2+(-a_1-b_1\sqrt2)=0 a 1 + b 1 2 + ( − a 1 − b 1 2 ) = 0
2] S S S is a monoid under multiplication, meaning that:
( p ⋅ q ) ⋅ r = p ⋅ ( q ⋅ r ) (p ⋅ q) ⋅ r = p ⋅ (q ⋅ r) ( p ⋅ q ) ⋅ r = p ⋅ ( q ⋅ r )
we have:
( ( a 1 + b 1 2 ) ( a 2 + b 2 2 ) ) ( a 3 + b 3 2 ) = ( a 1 + b 1 2 ) ( ( a 2 + b 2 2 ) ( a 3 + b 3 2 ) ) ((a_1+b_1\sqrt2)(a_2+b_2\sqrt2))(a_3+b_3\sqrt2)=(a_1+b_1\sqrt2)((a_2+b_2\sqrt2)(a_3+b_3\sqrt2)) (( a 1 + b 1 2 ) ( a 2 + b 2 2 )) ( a 3 + b 3 2 ) = ( a 1 + b 1 2 ) (( a 2 + b 2 2 ) ( a 3 + b 3 2 ))
There is an element 1 = 1 + 0 2 1=1+0\sqrt{2} 1 = 1 + 0 2 in S if a = 1 , b = 0 S\ \text{if }a=1, b=0 S if a = 1 , b = 0 such that p ⋅ 1 = p and 1 ⋅ p = p
3] Multiplication is distributive with respect to addition, meaning that:
p ⋅ (q + r) = (p ⋅ q) + (p ⋅ r)
we have:
( a 1 + b 1 2 ) ( a 2 + b 2 2 + a 3 + b 3 2 ) = ( a 1 + b 1 2 ) ( a 2 + b 2 2 ) + (a_1+b_1\sqrt2)(a_2+b_2\sqrt2+a_3+b_3\sqrt2)=(a_1+b_1\sqrt2)(a_2+b_2\sqrt2)+ ( a 1 + b 1 2 ) ( a 2 + b 2 2 + a 3 + b 3 2 ) = ( a 1 + b 1 2 ) ( a 2 + b 2 2 ) +
+ ( a 1 + b 1 2 ) ( a 3 + b 3 2 ) +(a_1+b_1\sqrt2)(a_3+b_3\sqrt2) + ( a 1 + b 1 2 ) ( a 3 + b 3 2 )
(q + r) ⋅ p = (q ⋅ p) + (r ⋅ p)
we have:
( a 2 + b 2 2 + a 3 + b 3 2 ) ( a 1 + b 1 2 ) = ( a 1 + b 1 2 ) ( a 2 + b 2 2 ) + (a_2+b_2\sqrt2+a_3+b_3\sqrt2)(a_1+b_1\sqrt2)=(a_1+b_1\sqrt2)(a_2+b_2\sqrt2)+ ( a 2 + b 2 2 + a 3 + b 3 2 ) ( a 1 + b 1 2 ) = ( a 1 + b 1 2 ) ( a 2 + b 2 2 ) +
+ ( a 1 + b 1 2 ) ( a 3 + b 3 2 ) +(a_1+b_1\sqrt2)(a_3+b_3\sqrt2) + ( a 1 + b 1 2 ) ( a 3 + b 3 2 )
Comments