Question #294228

P rove that all real of the form a + b 2 , a; b ∈ Z form s a ring.


1
Expert's answer
2022-02-07T17:14:11-0500

We are to prove that the set S={a+b2:a,bZ}\displaystyle S=\{a+b\sqrt{2}:a,b\in\Z\} is a ring.

Let p=a1+b12, q=a2+b22, r=a3+b32p=a_1+b_1\sqrt{2},\ q=a_2+b_2\sqrt{2},\ r=a_3+b_3\sqrt{2} belong to SS, then


1] SS  is an abelian group under addition, meaning that:

(p+q)+r=p+(q+r)-(p+q)+r=p+(q+r)

we have:

(a1+b12+a2+b22)+a3+b32=a1+b12+(a2+b22+a3+b32)(a_1+b_1\sqrt2+a_2+b_2\sqrt2)+a_3+b_3\sqrt2=a_1+b_1\sqrt2+(a_2+b_2\sqrt2+a_3+b_3\sqrt2)


p+q=q+p--p+q=q+p

we have:

a1+b12+a2+b22=a2+b22+a1+b12a_1+b_1\sqrt2+a_2+b_2\sqrt2=a_2+b_2\sqrt2+a_1+b_1\sqrt2


--- There is an element 0=0+020=0+0\sqrt{2} in SS if a1, b1=0a_1,\ b_1=0  such that p+0=pp + 0 = p


---- For each p in S there exists −p in S such that p + (−p) = 0

we have:

a1+b12+(a1b12)=0a_1+b_1\sqrt2+(-a_1-b_1\sqrt2)=0


2] SS  is a monoid under multiplication, meaning that:

(pq)r=p(qr)(p ⋅ q) ⋅ r = p ⋅ (q ⋅ r)

we have:

((a1+b12)(a2+b22))(a3+b32)=(a1+b12)((a2+b22)(a3+b32))((a_1+b_1\sqrt2)(a_2+b_2\sqrt2))(a_3+b_3\sqrt2)=(a_1+b_1\sqrt2)((a_2+b_2\sqrt2)(a_3+b_3\sqrt2))


There is an element 1=1+021=1+0\sqrt{2} in S if a=1,b=0S\ \text{if }a=1, b=0  such that p ⋅ 1 = p and 1 ⋅ p = p


3] Multiplication is distributive with respect to addition, meaning that:

p ⋅ (q + r) = (p ⋅ q) + (p ⋅ r)

we have:

(a1+b12)(a2+b22+a3+b32)=(a1+b12)(a2+b22)+(a_1+b_1\sqrt2)(a_2+b_2\sqrt2+a_3+b_3\sqrt2)=(a_1+b_1\sqrt2)(a_2+b_2\sqrt2)+

+(a1+b12)(a3+b32)+(a_1+b_1\sqrt2)(a_3+b_3\sqrt2)


(q + r) ⋅ p = (q ⋅ p) + (r ⋅ p)

we have:

(a2+b22+a3+b32)(a1+b12)=(a1+b12)(a2+b22)+(a_2+b_2\sqrt2+a_3+b_3\sqrt2)(a_1+b_1\sqrt2)=(a_1+b_1\sqrt2)(a_2+b_2\sqrt2)+

+(a1+b12)(a3+b32)+(a_1+b_1\sqrt2)(a_3+b_3\sqrt2)

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS