I={x2−4x+3,x3+3x2−x−3}={(x−1)(x−3),(x+3)(x2−1)}={(x−1)(x−3),(x+3)(x−1)(x+1)}={(x−1)(x−3)f(x)+(x+3)(x−1)(x+1)q(x):f(x),q(x)∈Z[x]}={(x−1)[(x−3)f(x)+(x+3)(x+1)q(x)]:f(x),q(x)∈Z[x]}={(x−1)g(x):g(x)=(x−3)f(x)+(x+3)(x+1)q(x):f(x),q(x)∈Z[x]}I=<(x−1)>=<p(x)>, where p(x)=(x−1)∈Z[x]
Comments