Question #278807

a*b=-a-b-2ab; a⊕b=3a+3b


1
Expert's answer
2021-12-13T14:05:03-0500

Let the operations * and ⊕ be defined on the set of integers.

The operation * on Z\Z is associative, if for every a,b,c,Z,a, b, c, ∈ \Z, we have

(ab)c=a(bc).(a ^* b) ^* c = a^* (b^*c).

We have


(ab)c=(ab2ab)c(a ^* b) ^* c=(-a-b-2ab) ^* c

=a+b+2abc+2(a+b+2ab)c=a+b+2ab-c+2(a+b+2ab)c

=a+bc+2ab+2ac+2bc+4abc=a+b-c+2ab+2ac+2bc+4abc

a(bc)=a(bc2bc)a^* (b^*c)=a^* (-b-c-2bc)

=a+b+c+2bc+2a(b+c+2bc)=-a+b+c+2bc+2a(b+c+2bc)

=a+b+c+2ab+2ac+2bc+4abc=-a+b+c+2ab+2ac+2bc+4abc

Suppose (ab)c=a(bc),a,b,cZ.(a ^* b) ^* c = a^* (b^*c), a, b, c \in \Z. Then


a+bc+2ab+2ac+2bc+4abca+b-c+2ab+2ac+2bc+4abc

=a+b+c+2ab+2ac+2bc+4abc=-a+b+c+2ab+2ac+2bc+4abc

=>a=c=>a=c

Hence the statement (ab)c=a(bc)(a ^* b) ^* c = a^* (b^*c) is False for ac,a,b,cZ.a\not=c, a, b,c \in \Z.

The operation ^* is not associative.


The operation ^* on Z\Z is commutative, if for every a,b,Z,a, b, ∈ \Z, we have

ab=baa ^* b = b^* a

We have


ab=ab2aba ^* b =-a-b-2ab

ba=ba2ba=ab2abb ^* a =-b-a-2ba=-a-b-2ab

Hence the statement ab=baa ^* b = b^* a is True for a,bZ.a, b \in \Z.

The operation ^* is commutative.


The operation ^* on Z\Z is left-distributive over , if for every a,b,cZ,a, b, c∈ \Z, we have a(bc)=(ab)(ac)a ^*( b⊕c) =(a^*b)⊕(a^*c)

We have


a(bc)=a(3b+3c)2a(3b+3c)a ^*( b⊕c)=-a-(3b+3c)-2a(3b+3c)

=a3b3c6ab6ac=-a-3b-3c-6ab-6ac

(ab)(ac)=3(ab2ab)+3(ac2ac)(a^*b)⊕(a^*c) =3(-a-b-2ab)+3(-a-c-2ac)


=6a3b3c6ab6ac=-6a-3b-3c-6ab-6ac

Suppose a(bc)=(ab)(ac),a,b,cZ.a ^*( b⊕c) =(a^*b)⊕(a^*c) , a, b, c \in \Z. Then


a3b3c6ab6ac-a-3b-3c-6ab-6ac

=6a3b3c6ab6ac=-6a-3b-3c-6ab-6ac

=>a=0=>a=0

Hence the statement a(bc)=(ab)(ac)a ^*( b⊕c) =(a^*b)⊕(a^*c) is False for a0,a,b,cZ.a\not=0, a, b,c \in \Z.

The operation ^* is not left-distributive over .⊕.


The operation ^* on Z\Z is right-distributive over , if for every a,b,cZ,a, b, c∈ \Z, we have (bc)a=(ba)(ca)( b⊕c)^*a =(b^*a)⊕(c^*a)

We have


(bc)a=(3b+3c)a2a(3b+3c)( b⊕c)^*a =-(3b+3c)-a-2a(3b+3c)

=a3b3c6ab6ac=-a-3b-3c-6ab-6ac

(ba)(ca)=3(ba2ba)+3(ca2ca)(b^*a)⊕(c^*a) =3(-b-a-2ba)+3(-c-a-2ca)

=6a3b3c6ab6ac=-6a-3b-3c-6ab-6ac

Suppose (bc)a=(ba)(ca),a,b,cZ.( b⊕c)^*a =(b^*a)⊕(c^*a) , a, b, c \in \Z. Then


a3b3c6ab6ac-a-3b-3c-6ab-6ac

=6a3b3c6ab6ac=-6a-3b-3c-6ab-6ac

=>a=0=>a=0

Hence the statement (bc)a=(ba)(ca)( b⊕c)^*a =(b^*a)⊕(c^*a) is False for a0,a,b,cZ.a\not=0, a, b,c \in \Z.

The operation ^* is not right-distributive over .⊕.


The operation on Z\Z is associative, if for every a,b,c,Z,a, b, c, ∈ \Z, we have

(ab)c=a(bc).(a ⊕ b) ⊕ c = a⊕(b⊕c).

We have


(ab)c=(3a+3b)c=3(3a+3b)+3c(a⊕ b) ⊕c=(3a+3b) ⊕c=3(3a+3b)+3c

=9a+9b+3c=9a+9b+3c

a(bc)=a(3b+3c)=3a+3(3b+3c)a⊕(b⊕c)=a⊕(3b+3c)=3a+3(3b+3c)

=3a+9b+9c=3a+9b+9c

Suppose (ab)c=a(bc),a,b,cZ.(a ⊕ b) ⊕ c = a⊕(b⊕c) , a, b, c \in \Z. Then

9a+9b+3c=3a+9b+9c=>a=c9a+9b+3c=3a+9b+9c=>a=c

Hence the statement (ab)c=a(bc)(a ⊕ b) ⊕ c = a⊕(b⊕c) is False for ac,a,b,cZ.a\not=c, a, b,c \in \Z.

The operation is not associative


The operation on Z\Z is commutative, if for every a,b,Z,a, b, ∈ \Z, we have

ab=baa⊕ b = b⊕ a

We have


ab=3a+3ba ⊕b =3a+3b

ba=3b+3a=3a+3bb⊕a =3b+3a=3a+3b

Then ab=3a+3b=3b+3a=ba,a,bZ.a ⊕ b =3a+3b=3b+3a= b⊕a, a,b\in\Z.

The operation is commutative.


The operation on Z\Z is left-distributive over ^* , if for every a,b,cZ,a, b, c∈ \Z, we have a(bc)=(ab)(ac).a ⊕( b^*c) =(a⊕b)^*(a⊕c).

We have


a(bc)=3a+3(bc2bc)a ⊕( b^*c)=3a+3(-b-c-2bc)

=3a3b3c6bc=3a-3b-3c-6bc

(ab)(ac)=(3a+3b)(3a+3c)(a⊕b)^*(a⊕c)=-(3a+3b)-(3a+3c)


2(3a+3b)(3a+3c)-2(3a+3b)(3a+3c)

=6a3b3c18a218ab18ac18bc=-6a-3b-3c-18a^2-18ab-18ac-18bc

Let a=1,b=c=0.a=1, b=c=0. Then


a(bc)=1(00)a ⊕( b^*c)=1 ⊕( 0^*0)

=3(1)3(0)3(0)6(0)(0)=3=3(1)-3(0)-3(0)-6(0)(0)=3

(ab)(ac)=(10)(10)(a⊕b)^*(a⊕c)=(1⊕0)^*(1⊕0)

=6(1)3(0)3(0)18(1)2=-6(1)-3(0)-3(0)-18(1)^2

18(1)(0)18(1)(0)18(0)(0)=24-18(1)(0)-18(1)(0)-18(0)(0)=-24

Since 324,3\not=-24, the operation is not left-distributive over .^*.


The operation on Z\Z is right-distributive over ^* , if for every a,b,cZ,a, b, c∈ \Z, we have (bc)a=(ba)(ca).( b^*c) ⊕a=(b⊕a)^*(c⊕a).

We have


(bc)a=3(bc2bc)+3a( b^*c) ⊕a=3(-b-c-2bc)+3a

=3a3b3c6bc=3a-3b-3c-6bc

(ba)(ca)=(3b+3a)(3c+3a)(b⊕a)^*(c⊕a)=-(3b+3a)-(3c+3a)

2(3b+3a)(3c+3a)-2(3b+3a)(3c+3a)

=6a3b3c18bc18ac18ab18a2=-6a-3b-3c-18bc-18ac-18ab-18a^2

Let a=1,b=c=0.a=1, b=c=0. Then


(bc)a=(00)1=3(1)3(0)3(0)( b^*c) ⊕a=( 0^*0) ⊕1=3(1)-3(0)-3(0)

6(0)(0)=3-6(0)(0)=3

(ba)(ca)=(01)(01)(b⊕a)^*(c⊕a)=(0⊕1)^*(0⊕1)

=6(1)3(0)3(0)18(0)(0)18(1)(0)=-6(1)-3(0)-3(0)-18(0)(0)-18(1)(0)

18(1)(0)18(1)2=24-18(1)(0)-18(1)^2=-24

Since 324,3\not=-24, the operation is not right-distributive over .^*.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS