Answer to Question #23893 in Abstract Algebra for jeremy

Question #23893
Let k be any field of characteristic 3, G = S3 and let V be the kG-module ke1 ⊕ ke2 ⊕ ke3/k(e1 + e2 + e3),
on which G acts by permuting the ei’s. Is G a completely reducible linear group?
1
Expert's answer
2013-02-14T08:01:23-0500
Since (123) does not act triviallyon V , the representation homomorphism ϕ : G → GL(V ) must be injective.Therefore, ϕrealizes G as alinear group in GL(V ). It is easy to see that Vo = k(e1− e2) is a kG – module affording the sign representation (of G),with V/Vo affording the trivial representation, so kGV isindecomposable. Therefore, G ⊆GL(V ) is not completelyreducible.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS