Answer to Question #23481 in Abstract Algebra for sanches

Question #23481
Let H be a normal subgroup of G. If H is finite, show that I is also nilpotent.
1
Expert's answer
2013-02-05T08:13:23-0500
Any σ ∈ G defines a conjugation automorphism on thesubring kH ⊆ kG, and this automorphism must takeradkH to rad kH. Therefore, (rad kH)σ ⊆ σ · rad kH ⊆ I, which shows that I is anideal of kG. This method also shows that In = kG · (radkH)n for any n ≥ 1, so if H is finite,then I is nilpotent..

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS