Answer to Question #23460 in Abstract Algebra for jeremy

Question #23460
Let R be a subring of a right noetherian ring Q with a set S ⊆ R ∩ U(Q) such that every element q ∈ Q has the form rs^−1 for some r ∈ R and s ∈ S. Show that: if Q is prime, then so is R.
1
Expert's answer
2013-02-01T08:18:38-0500
Let a, b ∈ R be such that aRb = 0. Given ring has nextproperty: if B is an ideal of R, then BQ is an ideal of Q.Applying this to the ideal B = RbR in R, we have aQb ⊆ aQ · (RbR)Q ⊆ a(RbR)Q = 0, so a =0 or b = 0, and hence R is prime ring.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS