Question #233071

An element of R is called idempotent if a 2= a. find all idempotents of Z6 x Z12

1
Expert's answer
2021-11-15T17:39:44-0500

Since the idempotent in Z6 are {0,1,3,4} and those in Z12 are {0,1,4,9}Then we have that the idempotent in Z6×Z12 is the set of the cartesian product of the idempotent in each of the constituent sets.Idempotent(Z6,Z12)={(0,0),(0,1),(0,4),(0,9),(1,0),(1,1),(1,4),(1,9),(3,0),(3,1),(3,4),(3,9),(4,0),(4,1),(4,4),(4,9)}\text{Since the idempotent in $\Z_6$ are $\{0, 1, 3,4\}$ and those in $\Z_{12}$ are \{0,1,4,9\}} \\ \text{Then we have that the idempotent in $\Z_6 \times \Z_{12}$ is the set of the cartesian product of the idempotent in each of the constituent sets.} \\ \therefore \text{Idempotent}(\Z_6, \Z_{12}) = \{ (0,0), (0,1), (0,4), (0,9),(1,0),(1,1),(1,4),(1,9),(3,0), (3,1), (3,4), (3,9), (4,0), (4,1),(4,4),(4,9)\}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS