Define a function ϕ:Hom(Z,G)→G
such that ϕ(f)=f(1)∀f∈Hom(Z,G).
This function is well-defined since f(n)=[f(1)]n∀n∈Z.
Let f,g∈Hom(Z,G). Consider
ϕ(fg)=(fg)(1)=f(1)g(1)=ϕ(f)ϕ(g).
Hence ϕ is a homomorphism.
Next, suppose ϕ(f)=ϕ(g). Then f(1)=g(1). So ∀n∈Z,f(n)=[f(1)]n=[g(1)]n=g(n).
Thus f=g. Hence ϕ is one-to-one.
Finally, let x∈G. Define a function ψ:Z→G such that ψ(n)=xn∀n∈Z. Let m,n∈Z. Consider
ψ(m+n)=xm+n=xmxn=ψ(m)ψ(n).
So ψ is a homomorphism.
Hence ϕ(ψ)=ψ(1)=x. Thus ψ is onto.
Hence ϕ is an isomorphism.
Comments