Question #206174

Prove that Homz(Z,M) is isomorphic to M where M is an abelian group.


1
Expert's answer
2021-06-15T12:32:14-0400

Define a function ϕ:Hom(Z,G)G\phi:\text{Hom}(\mathbb{Z},G) \to G

such that ϕ(f)=f(1)fHom(Z,G).\phi(f)=f(1) \forall f \in \text{Hom}(\mathbb{Z},G).

This function is well-defined since f(n)=[f(1)]nnZ.f(n) = [f(1)]^n \forall n \in \mathbb{Z}.

Let f,gHom(Z,G).f,g \in \text{Hom}(\mathbb{Z},G). Consider

ϕ(fg)=(fg)(1)=f(1)g(1)=ϕ(f)ϕ(g).\phi(fg)=(fg)(1)=f(1)g(1)=\phi(f)\phi(g).

Hence ϕ\phi is a homomorphism.

Next, suppose ϕ(f)=ϕ(g).\phi(f)=\phi(g). Then f(1)=g(1).f(1)=g(1). So nZ,f(n)=[f(1)]n=[g(1)]n=g(n).\forall n \in \mathbb{Z}, f(n) = [f(1)]^n\\ = [g(1)]^n=g(n).

Thus f=g.f = g. Hence ϕ\phi is one-to-one.

Finally, let xG.x \in G. Define a function ψ:ZG\psi:\mathbb{Z}\to G such that ψ(n)=xnnZ.\psi(n)=x^n\forall n \in \mathbb{Z}. Let m,nZ.m,n \in \mathbb{Z}. Consider

ψ(m+n)=xm+n=xmxn=ψ(m)ψ(n).\psi(m+n) = x^{m+n}=x^mx^n = \psi(m)\psi(n).

So ψ\psi is a homomorphism.

Hence ϕ(ψ)=ψ(1)=x.\phi(\psi) = \psi(1)=x. Thus ψ\psi is onto.

Hence ϕ\phi is an isomorphism.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS