Question #203331

Prove that every ideal I of a ring R is the kernel of a ring homomorphism of R.


1
Expert's answer
2021-06-18T02:29:01-0400

Let us prove that every ideal II of a ring RR is the kernel of a ring homomorphism of RR. Consider the quotient ring R/I={a+I:aR}.R/I=\{a+I:a\in R\}. Let a\overline{a} denotes a+I.a+I. Then a+b=a+b, ab=ab.\overline{a}+\overline{b}=\overline{a+b},\ \overline{a}\cdot\overline{b}=\overline{a\cdot b}. Consider the canonical ring homomorphism π:RR/I, π(a)=a.\pi:R\to R/I,\ \pi(a)=\overline{a}. It is indeed a homomorphism because of π(a+b)=a+b=a+b=π(a)+π(b),\pi(a+b)=\overline{a+b}=\overline{a}+\overline{b}=\pi(a)+\pi(b), π(ab)=ab=ab=π(a)π(b).\pi(a\cdot b)=\overline{a\cdot b}=\overline{a}\cdot \overline{b}=\pi(a)\cdot\pi(b). It follows that kerπ={aR:π(a)=0}={aR:a=0}={aR:a+I=0+I}={aR:aII}={aR:aI}=I.\ker\pi=\{a\in R: \pi(a)=\overline{0}\}=\{a\in R: \overline{a}=\overline{0}\} =\{a\in R: a+I=0+I\}=\{a\in R: a\in I-I\}=\{a\in R: a\in I\}=I.

We conclude that II is a kernel of a ring homomorphism π:RR/I.\pi:R\to R/I.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS