Let f:Z→Zm×Zn, f(x)=(xmodm, xmodn), m,n∈N.
i) If (m,n)=(3,4), then kerf={z∈Z : f(z)=(0,0)}={z∈Z : (zmod3, zmod4)=(0,0)}={z∈Z : zmod3=0, zmod4=0}={z∈Z : 3∣z, 4∣z}={z∈Z : 12∣z}=12Z.
ii) If (m,n)=(6,4), then kerf={z∈Z : f(z)=(0,0)}={z∈Z : (zmod6, zmod4)=(0,0)}={z∈Z : zmod6=0, zmod4=0}={z∈Z : 6∣z, 4∣z}={z∈Z : lcm(6,4)∣z}={z∈Z : 12∣z}=12Z.
iii) We see that kerf from (i) and (ii) coincide. We can generalize that for two pairs (m1,n1) and (m2,n2) the kernels of corresponding maps coincide if and only if lcm(m1,n1)=lcm(m2,n2).
Comments