Question #203324

Define f:Z→Zm × Zn :f (x)=(xmodm,xmod n),m,n∈N.

i) If (m, n) = (3, 4), find Ker f.

ii) If (m, n) = (6, 4), find Ker f.

iii) What can you generalize about Ker f from (i) and (ii)?


1
Expert's answer
2021-06-15T12:07:56-0400

Let f:ZZm×Zn, f(x)=(xmodm, xmodn),  m,nN.f: \Z\to \Z_m \times \Z_n,\ f (x)=(x\mod m,\ x \mod n),\ \ m,n\in\N.


i) If (m,n)=(3,4)(m, n) = (3, 4), then kerf={zZ : f(z)=(0,0)}={zZ : (zmod3, zmod4)=(0,0)}={zZ : zmod3=0, zmod4=0}={zZ : 3z, 4z}={zZ : 12z}=12Z.\ker f=\{z\in\Z\ :\ f(z)=(0,0)\}=\{z\in\Z\ :\ (z\mod 3,\ z \mod 4)=(0,0)\}=\{z\in\Z\ :\ z\mod 3=0,\ z \mod 4=0\} =\{z\in\Z\ :\ 3|z,\ 4|z \}=\{z\in\Z\ :\ 12|z \}=12\Z.


ii) If (m,n)=(6,4)(m, n) = (6, 4), then kerf={zZ : f(z)=(0,0)}={zZ : (zmod6, zmod4)=(0,0)}={zZ : zmod6=0, zmod4=0}={zZ : 6z, 4z}={zZ : lcm(6,4)z}={zZ : 12z}=12Z.\ker f=\{z\in\Z\ :\ f(z)=(0,0)\}=\{z\in\Z\ :\ (z\mod 6,\ z \mod 4)=(0,0)\}=\{z\in\Z\ :\ z\mod 6=0,\ z \mod 4=0\} =\{z\in\Z\ :\ 6|z,\ 4|z \}=\{z\in\Z\ :\ lcm(6,4)|z \}=\{z\in\Z\ :\ 12|z \}=12\Z.


iii) We see that kerf\ker f from (i) and (ii) coincide. We can generalize that for two pairs (m1,n1)(m_1,n_1) and (m2,n2)(m_2,n_2) the kernels of corresponding maps coincide if and only if lcm(m1,n1)=lcm(m2,n2).lcm(m_1,n_1)=lcm(m_2,n_2).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS