Question #202566

Write ten examples of Extension field?


1
Expert's answer
2021-06-06T17:14:27-0400

(1)The field of complex numbers   C  is an extension field of the field of real numbers   R (1)The\space field\space of\space complex\space numbers\space {\displaystyle\space \mathbb\space }\mathbb{C}\space \space is\space an\space extension\space field\space of\space the\space field\space of\\\space real\space numbers\space {\displaystyle \mathbb\space }\mathbb\space {R}\space

(2)The field of complex numbers   C  is an extension field of the field of rational numbers   Q (2)The\space field\space of\space complex\space numbers\space {\displaystyle\space \mathbb\space }\mathbb{C}\space \space is\space an\space extension\space field\space of\space the\space field\space of\\\space rational\space numbers\space {\displaystyle \mathbb\space }\mathbb\space {Q}\space

(3)The field of real numbers   R  is an extension field of the field of rarional numbers   Q (3)The\space field\space of\space real\space numbers\space {\displaystyle\space \mathbb\space }\mathbb{R}\space \space is\space an\space extension\space field\space of\space the\space field\space of\\\space rarional\space numbers\space {\displaystyle \mathbb\space }\mathbb\space {Q}\space

(4)The field Q(2)={a+b2a,bQ},is an extension field of Q(4)The\space field\space {\displaystyle \mathbb {Q} ({\sqrt {2}})=\left\{a+b{\sqrt {2}}\mid a,b\in \mathbb {Q} \right\},} is \space an \space extension \space field\space of\space {\displaystyle \mathbb {Q} }

(5)The fieldQ(2,3)=Q(2)(3)={a+b3a,bQ(2)}={a+b2+c3+d6a,b,c,dQ},is an extension field of Q2(5)The \space field \\ {\displaystyle {\begin{aligned}\mathbb {Q} \left({\sqrt {2}},{\sqrt {3}}\right)&=\mathbb {Q} \left({\sqrt {2}}\right)\left({\sqrt {3}}\right)\\&=\left\{a+b{\sqrt {3}}\mid a,b\in \mathbb {Q} \left({\sqrt {2}}\right)\right\}\\&=\left\{a+b{\sqrt {2}}+c{\sqrt {3}}+d{\sqrt {6}}\mid a,b,c,d\in \mathbb {Q} \right\},\end{aligned}}}\\ is\space an \space extension\space field \space of\space {\displaystyle \mathbb {Q\sqrt{2}} }

(6)The fieldQ(2,3)=Q(2)(3)={a+b3a,bQ(2)}={a+b2+c3+d6a,b,c,dQ},is an extension field of Q3(6)The \space field \\ {\displaystyle {\begin{aligned}\mathbb {Q} \left({\sqrt {2}},{\sqrt {3}}\right)&=\mathbb {Q} \left({\sqrt {2}}\right)\left({\sqrt {3}}\right)\\&=\left\{a+b{\sqrt {3}}\mid a,b\in \mathbb {Q} \left({\sqrt {2}}\right)\right\}\\&=\left\{a+b{\sqrt {2}}+c{\sqrt {3}}+d{\sqrt {6}}\mid a,b,c,d\in \mathbb {Q} \right\},\end{aligned}}}\\ is\space an \space extension\space field \space of\space {\displaystyle \mathbb {Q\sqrt{3}} }

(7)The fieldQ(2,3)=Q(2)(3)={a+b3a,bQ(2)}={a+b2+c3+d6a,b,c,dQ},is an extension field of Q(7)The \space field \\ {\displaystyle {\begin{aligned}\mathbb {Q} \left({\sqrt {2}},{\sqrt {3}}\right)&=\mathbb {Q} \left({\sqrt {2}}\right)\left({\sqrt {3}}\right)\\&=\left\{a+b{\sqrt {3}}\mid a,b\in \mathbb {Q} \left({\sqrt {2}}\right)\right\}\\&=\left\{a+b{\sqrt {2}}+c{\sqrt {3}}+d{\sqrt {6}}\mid a,b,c,d\in \mathbb {Q} \right\},\end{aligned}}}\\ is\space an \space extension\space field \space of\space {\displaystyle \mathbb {Q} }

(8)Q(2+3)={a+b(2+3)+c(2+3)2+d(2+3)3a,b,c,dQ}.is an extension field of Q(8)\\{\displaystyle {\begin{aligned}\mathbb {} { {}}{ {}}&\mathbb {Q} ({\sqrt {2}}+{\sqrt {3}})\\&=\left\{a+b({\sqrt {2}}+{\sqrt {3}})+c({\sqrt {2}}+{\sqrt {3}})^{2}+d({\sqrt {2}}+{\sqrt {3}})^{3}\mid a,b,c,d\in \mathbb {Q} \right\}.\end{aligned}}}\\ is\space an \space extension\space field \space of\space {\displaystyle \mathbb {Q} }

(9)F is any field and F[x] the polynomial ring. Let F(X) be thequotient field of F[x]. Then, F(X) is an extension field of F.(9) F\space is\space any\space field\space and\space F[x]\space the\space polynomial\space ring.\space \\Let\space F(X)\space be\space the quotient\space field\space of\space F[x].\space Then,\space F(X)\space is\space an\space extension\space field\space of\space F.

(10)any field F, F is a finite extension over itself.(10)any\space field\space F,\space F\space is\space a\space finite\space extension\space over\space itself.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS