( 1 ) T h e f i e l d o f c o m p l e x n u m b e r s C i s a n e x t e n s i o n f i e l d o f t h e f i e l d o f r e a l n u m b e r s R (1)The\space field\space of\space complex\space numbers\space {\displaystyle\space \mathbb\space }\mathbb{C}\space \space is\space an\space extension\space field\space of\space the\space field\space of\\\space real\space numbers\space {\displaystyle \mathbb\space }\mathbb\space {R}\space ( 1 ) T h e f i e l d o f co m pl e x n u mb ers C i s an e x t e n s i o n f i e l d o f t h e f i e l d o f re a l n u mb ers R
( 2 ) T h e f i e l d o f c o m p l e x n u m b e r s C i s a n e x t e n s i o n f i e l d o f t h e f i e l d o f r a t i o n a l n u m b e r s Q (2)The\space field\space of\space complex\space numbers\space {\displaystyle\space \mathbb\space }\mathbb{C}\space \space is\space an\space extension\space field\space of\space the\space field\space of\\\space rational\space numbers\space {\displaystyle \mathbb\space }\mathbb\space {Q}\space ( 2 ) T h e f i e l d o f co m pl e x n u mb ers C i s an e x t e n s i o n f i e l d o f t h e f i e l d o f r a t i o na l n u mb ers Q
( 3 ) T h e f i e l d o f r e a l n u m b e r s R i s a n e x t e n s i o n f i e l d o f t h e f i e l d o f r a r i o n a l n u m b e r s Q (3)The\space field\space of\space real\space numbers\space {\displaystyle\space \mathbb\space }\mathbb{R}\space \space is\space an\space extension\space field\space of\space the\space field\space of\\\space rarional\space numbers\space {\displaystyle \mathbb\space }\mathbb\space {Q}\space ( 3 ) T h e f i e l d o f re a l n u mb ers R i s an e x t e n s i o n f i e l d o f t h e f i e l d o f r a r i o na l n u mb ers Q
( 4 ) T h e f i e l d Q ( 2 ) = { a + b 2 ∣ a , b ∈ Q } , i s a n e x t e n s i o n f i e l d o f Q (4)The\space field\space
{\displaystyle \mathbb {Q} ({\sqrt {2}})=\left\{a+b{\sqrt {2}}\mid a,b\in \mathbb {Q} \right\},}
is \space an \space extension \space field\space of\space {\displaystyle \mathbb {Q} } ( 4 ) T h e f i e l d Q ( 2 ) = { a + b 2 ∣ a , b ∈ Q } , i s an e x t e n s i o n f i e l d o f Q
( 5 ) T h e f i e l d Q ( 2 , 3 ) = Q ( 2 ) ( 3 ) = { a + b 3 ∣ a , b ∈ Q ( 2 ) } = { a + b 2 + c 3 + d 6 ∣ a , b , c , d ∈ Q } , i s a n e x t e n s i o n f i e l d o f Q 2 (5)The \space field \\
{\displaystyle {\begin{aligned}\mathbb {Q} \left({\sqrt {2}},{\sqrt {3}}\right)&=\mathbb {Q} \left({\sqrt {2}}\right)\left({\sqrt {3}}\right)\\&=\left\{a+b{\sqrt {3}}\mid a,b\in \mathbb {Q} \left({\sqrt {2}}\right)\right\}\\&=\left\{a+b{\sqrt {2}}+c{\sqrt {3}}+d{\sqrt {6}}\mid a,b,c,d\in \mathbb {Q} \right\},\end{aligned}}}\\
is\space an \space extension\space field \space of\space {\displaystyle \mathbb {Q\sqrt{2}} } ( 5 ) T h e f i e l d Q ( 2 , 3 ) = Q ( 2 ) ( 3 ) = { a + b 3 ∣ a , b ∈ Q ( 2 ) } = { a + b 2 + c 3 + d 6 ∣ a , b , c , d ∈ Q } , i s an e x t e n s i o n f i e l d o f Q 2
( 6 ) T h e f i e l d Q ( 2 , 3 ) = Q ( 2 ) ( 3 ) = { a + b 3 ∣ a , b ∈ Q ( 2 ) } = { a + b 2 + c 3 + d 6 ∣ a , b , c , d ∈ Q } , i s a n e x t e n s i o n f i e l d o f Q 3 (6)The \space field \\
{\displaystyle {\begin{aligned}\mathbb {Q} \left({\sqrt {2}},{\sqrt {3}}\right)&=\mathbb {Q} \left({\sqrt {2}}\right)\left({\sqrt {3}}\right)\\&=\left\{a+b{\sqrt {3}}\mid a,b\in \mathbb {Q} \left({\sqrt {2}}\right)\right\}\\&=\left\{a+b{\sqrt {2}}+c{\sqrt {3}}+d{\sqrt {6}}\mid a,b,c,d\in \mathbb {Q} \right\},\end{aligned}}}\\
is\space an \space extension\space field \space of\space {\displaystyle \mathbb {Q\sqrt{3}} } ( 6 ) T h e f i e l d Q ( 2 , 3 ) = Q ( 2 ) ( 3 ) = { a + b 3 ∣ a , b ∈ Q ( 2 ) } = { a + b 2 + c 3 + d 6 ∣ a , b , c , d ∈ Q } , i s an e x t e n s i o n f i e l d o f Q 3
( 7 ) T h e f i e l d Q ( 2 , 3 ) = Q ( 2 ) ( 3 ) = { a + b 3 ∣ a , b ∈ Q ( 2 ) } = { a + b 2 + c 3 + d 6 ∣ a , b , c , d ∈ Q } , i s a n e x t e n s i o n f i e l d o f Q (7)The \space field \\
{\displaystyle {\begin{aligned}\mathbb {Q} \left({\sqrt {2}},{\sqrt {3}}\right)&=\mathbb {Q} \left({\sqrt {2}}\right)\left({\sqrt {3}}\right)\\&=\left\{a+b{\sqrt {3}}\mid a,b\in \mathbb {Q} \left({\sqrt {2}}\right)\right\}\\&=\left\{a+b{\sqrt {2}}+c{\sqrt {3}}+d{\sqrt {6}}\mid a,b,c,d\in \mathbb {Q} \right\},\end{aligned}}}\\
is\space an \space extension\space field \space of\space {\displaystyle \mathbb {Q} } ( 7 ) T h e f i e l d Q ( 2 , 3 ) = Q ( 2 ) ( 3 ) = { a + b 3 ∣ a , b ∈ Q ( 2 ) } = { a + b 2 + c 3 + d 6 ∣ a , b , c , d ∈ Q } , i s an e x t e n s i o n f i e l d o f Q
( 8 ) Q ( 2 + 3 ) = { a + b ( 2 + 3 ) + c ( 2 + 3 ) 2 + d ( 2 + 3 ) 3 ∣ a , b , c , d ∈ Q } . i s a n e x t e n s i o n f i e l d o f Q (8)\\{\displaystyle {\begin{aligned}\mathbb {} { {}}{ {}}&\mathbb {Q} ({\sqrt {2}}+{\sqrt {3}})\\&=\left\{a+b({\sqrt {2}}+{\sqrt {3}})+c({\sqrt {2}}+{\sqrt {3}})^{2}+d({\sqrt {2}}+{\sqrt {3}})^{3}\mid a,b,c,d\in \mathbb {Q} \right\}.\end{aligned}}}\\
is\space an \space extension\space field \space of\space {\displaystyle \mathbb {Q} } ( 8 ) Q ( 2 + 3 ) = { a + b ( 2 + 3 ) + c ( 2 + 3 ) 2 + d ( 2 + 3 ) 3 ∣ a , b , c , d ∈ Q } . i s an e x t e n s i o n f i e l d o f Q
( 9 ) F i s a n y f i e l d a n d F [ x ] t h e p o l y n o m i a l r i n g . L e t F ( X ) b e t h e q u o t i e n t f i e l d o f F [ x ] . T h e n , F ( X ) i s a n e x t e n s i o n f i e l d o f F . (9)
F\space is\space any\space field\space and\space F[x]\space the\space polynomial\space ring.\space \\Let\space F(X)\space be\space the
quotient\space field\space of\space F[x].\space Then,\space F(X)\space is\space an\space extension\space field\space of\space F. ( 9 ) F i s an y f i e l d an d F [ x ] t h e p o l y n o mia l r in g . L e t F ( X ) b e t h e q u o t i e n t f i e l d o f F [ x ] . T h e n , F ( X ) i s an e x t e n s i o n f i e l d o f F .
( 10 ) a n y f i e l d F , F i s a f i n i t e e x t e n s i o n o v e r i t s e l f . (10)any\space field\space F,\space F\space is\space a\space finite\space extension\space over\space itself. ( 10 ) an y f i e l d F , F i s a f ini t e e x t e n s i o n o v er i t se l f .
Comments