Question #199887

Prove that the group G=[a,b] with the defining set of relations a3=e, b7=e, a-1ba=b8 is a cyclic group of order 3?


1
Expert's answer
2022-01-10T18:41:46-0500

Consider the group G=a,bG=\langle a,b\rangle with the defining set of relations a3=e, b7=e, a1ba=b8.a^3=e,\ b^7=e,\ a^{-1}ba=b^8. Since b7=e,b^7=e, we conclude that the equality a1ba=b8a^{-1}ba=b^8 is equivalent to a1ba=b7b=eb=b,a^{-1}ba=b^7b=eb=b, and hence (after left multiplication by aa) to ba=ab.ba=ab. It follows that the elements aa and bb commute. Since 33 and 77 are relatively prime, we conclude that the element abab is of order 21, that is (ab)21=e.(ab)^{21}=e. Therefore, GG is a cyclic group of order 21.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS