Question #192150

Use the fundamental theorem of homomorphism for groups to prove the following theorem, which is called the zassenhaus


1
Expert's answer
2021-05-14T05:49:36-0400

Zassenhaus's Lemma:


Statement:

Let G be a group; let H,H,K,KH,H' ,K ,K'  be subgroups of G such that H' is a normal subgroup of H and K' is a normal subgroup of K. Then H(HK)H'\cdot (H\cap K')  is a normal subgroup of H(HK)H'\cdot(H\cap K) ; likewise, K(KH)K'\cdot (K\cap H')  is a normal subgroup of K(HK)K'\cdot(H\cap K)  ; furthermore, the quotient groups


(H(HK))/(H(HK))(H'\cdot (H\cap K))/(H'\cdot (H\cap K'))

and


(K(HK))/(K(KH))(K'\cdot(H\cap K))/(K'\cdot (K\cap H'))

are isomorphic.


Proof:

We first note that HKH\cap K  is a subgroup of H. Let η\eta  be the canonical homomorphism from H to H/H'. Then (η1η)(HK)=H(HK)(\eta^{-1}\circ\eta)(H\cap K)=H'\cdot (H\cap K) , so this indeed a group. Also, note that HKH\cap K'  is a normal subgroup of HKH\cap K . Hence


(η1η)(HK)=H(HK)(\eta^{-1}\circ\eta)(H\cap K')=H'\cdot (H\cap K')

is a normal subgroup of


(η1η)(HK)=H(HK)(\eta^{-1}\circ\eta)(H\cap K)=H'\cdot (H\cap K)

Now,

Let λ\lambda be the canonical homomorphism from H(HK)H'\cdot(H\cap K)  to (H(HK))/(H(HK))(H'\cdot(H\cap K))/(H'\cdot (H\cap K')) . Now, note that


(HK)(H(HK))=(HK)(HK)(H\cap K )\cap(H'\cdot (H\cap K'))=(H'\cap K)\cdot (H\cap K')



Thus by the group homomorphism theorems, groups (H(HK))/(H(HK))(H'\cdot (H\cap K))/(H'\cdot (H\cap K'))  and (HK)/((HK)(HK))(H\cap K)/((H'\cap K)\cdot(H\cap K')) are isomorphic. The lemma then follows from symmetry between H and K.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS