Define a map φ:M2[Z]→M2[Z], φ(A)=A.\varphi : M_2[\mathbb Z]\to M_2[\mathbb Z],\ \ \varphi(A)=A.φ:M2[Z]→M2[Z], φ(A)=A.
Then φ(A+B)=A+B=φ(A)+φ(B)\varphi(A+B)=A+B=\varphi(A)+\varphi(B)φ(A+B)=A+B=φ(A)+φ(B) and φ(A⋅B)=A⋅B=φ(A)⋅φ(B)\varphi(A\cdot B)=A\cdot B=\varphi(A)\cdot\varphi(B)φ(A⋅B)=A⋅B=φ(A)⋅φ(B). Thus φ\varphiφ is a ring homomorhism. If A≠BA\ne BA=B, then φ(A)=A≠B=φ(B)\varphi(A)=A\ne B=\varphi(B)φ(A)=A=B=φ(B), and consequently, φ\varphiφ is injective.
Answer: true
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment