Define a map "\\varphi : M_2[\\mathbb Z]\\to M_2[\\mathbb Z],\\ \\ \\varphi(A)=A."
Then "\\varphi(A+B)=A+B=\\varphi(A)+\\varphi(B)" and "\\varphi(A\\cdot B)=A\\cdot B=\\varphi(A)\\cdot\\varphi(B)". Thus "\\varphi" is a ring homomorhism. If "A\\ne B", then "\\varphi(A)=A\\ne B=\\varphi(B)", and consequently, "\\varphi" is injective.
Answer: true
Comments
Leave a comment