Question #136600
(a) Let M and T be a groups and φ : M −→ T an epimorphism. Prove that if M is Abelian then T is Abelian.
(b) Let G be a group and let H be a subgroup of index 2. Prove that for every g ∈ G, g−1 / ∈ H whenever g / ∈ H. Hence, prove that for all a,b ∈ G, if a / ∈ H and b / ∈ H then ab ∈ H.
(c) Find all the distinct left cosets of the subgroup H = h(1,1)i in Z2 ×Z4.
1
Expert's answer
2020-10-06T18:26:37-0400

(a) Let a,bTa,b\in T be arbitrary. Since φ:MT\varphi : M\to T is epimorphism, there are exist x,yMx,y\in M such that φ(x)=a,φ(y)=b.\varphi(x)=a, \varphi(y)=b. Taking into account that xy=yxxy=yx for any x,yMx,y\in M we conclude that

ab=φ(x)φ(y)=φ(xy)=φ(yx)=φ(y)φ(x)=ba.ab=\varphi(x)\varphi(y)=\varphi(xy)=\varphi(yx)=\varphi(y)\varphi(x)=ba.

Therefore, T is Abelian.


(b) If gH,g\notin H, then g1H.g^{-1}\notin H. Indeed, suppose that g1Hg^{-1}\in H. Since HH is a group, g=(g1)1Hg=(g^{-1})^{-1}\in H and we have a contradiction.

Each subgroup HH of index 2 is normal in GG because g1H=GH=Hg2g_1H=G\setminus H=Hg_2 for any g1H,g2H.g_1\notin H, g_2\notin H. Consequenly, the quotient group G/HG/H exists and is of order 2. Thus, (gH)(gH)=H(gH)(gH)=H for any gH.g\notin H. If aHa\notin H and bHb\notin H, then a,bGH=gHa,b\in G\setminus H=gH for any gHg\notin H, and therefore, ab(gH)(gH)=H.ab\in(gH)(gH)=H.


(с) Let H=(1,1)H=\langle(1,1)\rangle. Taking into account that (1,1)+(1,1)=(0,2),(1,1)+(1,1)+(1,1)=(1,3)(1,1)+(1,1)=(0,2), (1,1)+(1,1)+(1,1)=(1,3) and (1,1)+(1,1)+(1,1)+(1,1)=(0,0)(1,1)+(1,1)+(1,1)+(1,1)=(0,0) we conclude that

H={(1,1),(0,2),(1,3),(0,0)}H=\{(1,1), (0,2),(1,3),(0,0)\}.


Let us find all the distinct left cosets:

[(0,0)]=(0,0)+H=H,[(0,0)]=(0,0)+H=H,

[(0,1)]=(0,1)+H={(1,2),(0,3),(1,0),(0,1)}.[(0,1)]=(0,1)+H=\{(1,2), (0,3),(1,0),(0,1)\}.

Since [(0,0)][(0,1)]=Z2×Z4,[(0,0)]\cup[(0,1)]=\mathbb Z_2\times\mathbb Z_4, there are 2 distinct left coset of the subgroup HH in Z2×Z4\mathbb Z_2\times\mathbb Z_4: [(0,0)][(0,0)] and [(0,1)].[(0,1)].

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS