Z [ 2 ] \mathbb{Z}[\sqrt{2}] Z [ 2 ] is a ring under the ordinary addition and multiplication because:
1) Z [ 2 ] \mathbb{Z}[\sqrt{2}] Z [ 2 ] is closed under addition
If x , y ∈ Z [ 2 ] x,y\in \mathbb{Z}[\sqrt{2}] x , y ∈ Z [ 2 ] , then x = a + b 2 x=a+b\sqrt{2} x = a + b 2 and y = c + d 2 y=c+d\sqrt{2} y = c + d 2 , where a , b , c , d ∈ Z a,b,c,d\in \mathbb{Z} a , b , c , d ∈ Z .
x + y = ( a + b 2 ) + ( c + d 2 ) = ( a + c ) + ( b + d ) 2 ∈ Z [ 2 ] x+y=(a+b\sqrt{2})+(c+d\sqrt{2})=(a+c)+(b+d)\sqrt{2}\in \mathbb{Z}[\sqrt{2}] x + y = ( a + b 2 ) + ( c + d 2 ) = ( a + c ) + ( b + d ) 2 ∈ Z [ 2 ]
2) addition is associative ( Z [ 2 ] \mathbb{Z}[\sqrt{2}] Z [ 2 ] is a subset of R \mathbb{R} R )
3) there exists 0 = 0 + 0 ⋅ 2 ∈ Z [ 2 ] 0=0+0\cdot \sqrt{2}\in \mathbb{Z}[\sqrt{2}] 0 = 0 + 0 ⋅ 2 ∈ Z [ 2 ]
4) ∀ x ∈ Z [ 2 ] , x = a + b 2 , ∃ ( − x ) ∈ Z [ 2 ] , − x = ( − a ) + ( − b ) 2 \forall x\in \mathbb{Z}[\sqrt{2}],\ x=a+b\sqrt{2}, \ \ \exists (-x)\in \mathbb{Z}[\sqrt{2}], \ -x=(-a)+(-b)\sqrt{2} ∀ x ∈ Z [ 2 ] , x = a + b 2 , ∃ ( − x ) ∈ Z [ 2 ] , − x = ( − a ) + ( − b ) 2
5) addition is commutative (Z [ 2 ] \mathbb{Z}[\sqrt{2}] Z [ 2 ] is a subset of R \mathbb{R} R )
6) Z [ 2 ] \mathbb{Z}[\sqrt{2}] Z [ 2 ] is closed under multiplication
If x , y ∈ Z [ 2 ] x,y\in \mathbb{Z}[\sqrt{2}] x , y ∈ Z [ 2 ] , then x = a + b 2 x=a+b\sqrt{2} x = a + b 2 and y = c + d 2 y=c+d\sqrt{2} y = c + d 2 , where a , b , c , d ∈ Z a,b,c,d\in \mathbb{Z} a , b , c , d ∈ Z .
x ⋅ y = ( a + b 2 ) ( c + d 2 ) = ( a c + 2 b d ) + ( a d + b c ) 2 ∈ Z [ 2 ] x\cdot y=(a+b\sqrt{2})(c+d\sqrt{2})=(ac+2bd)+(ad+bc)\sqrt{2}\in \mathbb{Z}[\sqrt{2}] x ⋅ y = ( a + b 2 ) ( c + d 2 ) = ( a c + 2 b d ) + ( a d + b c ) 2 ∈ Z [ 2 ]
7) multiplication is associative (Z [ 2 ] \mathbb{Z}[\sqrt{2}] Z [ 2 ] is a subset of R \mathbb{R} R )
8) distributivity (Z [ 2 ] \mathbb{Z}[\sqrt{2}] Z [ 2 ] is a subset of R \mathbb{R} R )
Comments