Answer to Question #133618 in Abstract Algebra for PRATHIBHA ROSE C S

Question #133618
Prove that Z[√2]={a+b√2;a,b element of Z} is a ring under the ordinary addition and multiplication
1
Expert's answer
2020-09-27T16:38:32-0400

Z[2]\mathbb{Z}[\sqrt{2}] is a ring under the ordinary addition and multiplication because:

1) Z[2]\mathbb{Z}[\sqrt{2}] is closed under addition

If x,yZ[2]x,y\in \mathbb{Z}[\sqrt{2}] , then x=a+b2x=a+b\sqrt{2} and y=c+d2y=c+d\sqrt{2} , where a,b,c,dZa,b,c,d\in \mathbb{Z} .

x+y=(a+b2)+(c+d2)=(a+c)+(b+d)2Z[2]x+y=(a+b\sqrt{2})+(c+d\sqrt{2})=(a+c)+(b+d)\sqrt{2}\in \mathbb{Z}[\sqrt{2}]

2) addition is associative ( Z[2]\mathbb{Z}[\sqrt{2}] is a subset of R\mathbb{R} )

3) there exists 0=0+02Z[2]0=0+0\cdot \sqrt{2}\in \mathbb{Z}[\sqrt{2}]

4) xZ[2], x=a+b2,  (x)Z[2], x=(a)+(b)2\forall x\in \mathbb{Z}[\sqrt{2}],\ x=a+b\sqrt{2}, \ \ \exists (-x)\in \mathbb{Z}[\sqrt{2}], \ -x=(-a)+(-b)\sqrt{2}

5) addition is commutative (Z[2]\mathbb{Z}[\sqrt{2}] is a subset of R\mathbb{R} )

6) Z[2]\mathbb{Z}[\sqrt{2}] is closed under multiplication

If x,yZ[2]x,y\in \mathbb{Z}[\sqrt{2}] , then x=a+b2x=a+b\sqrt{2} and y=c+d2y=c+d\sqrt{2} , where a,b,c,dZa,b,c,d\in \mathbb{Z} .

xy=(a+b2)(c+d2)=(ac+2bd)+(ad+bc)2Z[2]x\cdot y=(a+b\sqrt{2})(c+d\sqrt{2})=(ac+2bd)+(ad+bc)\sqrt{2}\in \mathbb{Z}[\sqrt{2}]

7) multiplication is associative (Z[2]\mathbb{Z}[\sqrt{2}] is a subset of R\mathbb{R} )

8) distributivity (Z[2]\mathbb{Z}[\sqrt{2}] is a subset of R\mathbb{R} )



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment