Given that the map π:G→G defined by π(g)=g∗g. π(g1∗g2)=(g1∗g2)∗(g1∗g2)=g1∗(g2∗g1)∗g2 (using associative property of group).
If (G,∗) is an abelian group, then g2∗g1=g1∗g2
So, π(g1∗g2)=g1∗(g2∗g1)∗g2=g1∗(g1∗g2)∗g2
⟹π(g1∗g2)=(g1∗g1)∗(g2∗g2)=π(g1)∗π(g2)
Hence given mapping is Homomorphism.
Let the given mapping is homomophism, so π(g1∗g2)=π(g1)∗π(g2)
⟹g1∗(g2∗g1)∗g2=g1∗(g1∗g2)∗g2
⟹g2∗g1=g1∗g2
Hence, (G,∗) is abelian group.
Thus, Given mapping is homomorphism if and only if G is abelian group.
Comments