Question #118526
Let A and B be two subgroups of a group G. Prove that A
cup B is a subgroup of G iff_____.
a.A\\(\\subseteq\\) B
b.B\\(\\subseteq\\) A
c.A\\(\\subseteq\\) B and B\\(\\subseteq\\) A
d.A\\(\\subseteq\\) B or B
1
Expert's answer
2020-05-31T17:36:51-0400

LetA⊄BA\not\subset B and B⊄AB\not\subset A, then ABA\setminus B\neq\varnothing and BAB\setminus A\neq\varnothing.

Let xABx\in A\setminus B and yBAy\in B\setminus A. Prove that xy∉ABxy\not\in A\cup B, that is xy∉Axy\not\in A and xy∉Bxy\not\in B.

Indeed, if xyAxy\in A, then y=x1(xy)Ay=x^{-1}(xy)\in A, but we choose y∉Ay\not\in A. Similarly we obtain that xy∉Bxy\not\in B.

So we obtain that x,yABx,y\in A\cup B, but xy∉ABxy\not\in A\cup B, so ABA\cup B is not a subgroup of GG.


Therefore if ABA\cup B is a subgroup of GG, then ABA\subset B or BAB\subset A.

And if ABA\subset B or BAB\subset A, then AB=BA\cup B=B or AB=AA\cup B=A. In every case ABA\cup B is a subgroup of GG.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS