Here it is given "r_0=2.5 A^o=2.5 \\times 10 ^{-10} m" ,n=1,m=9, and A= "7.68\\times 10^{-29}"
we know that ,
"b=\\frac{A\\times ( r_0^8)}{9}= \\frac{7.68 \\times 10 ^{-29}\\times (2.5\\times 10 ^{-10})^8}{9}"
"b=1.30\\times 10 ^{-106}"
"y=\\frac{((-2\\times A\\times r_0^8)+(90\\times b))}{r_o^{11}}= \\frac{( 2.34 \\times 10^{-105})+(11.7\\times 10 ^{-105})}{(2.5\\times 10^{-10})^{11}}=\\frac{14.04 \\times 10^{-105}}{2.38\\times ^{-106}}"
"y=0.5899"
and young's modulus
"E=\\frac{y}{r_0}=\\frac{0.5899}{2.5 \\times 10^{-10}}" \
"E=0.235966 \\times 10 ^{10}"
"E=235.966\\times 10 ^7" "\\frac{N}{mm^2}"
Comments
Leave a comment