convert the following equation written in cartesian coordinate in to an equation of cylindrical coordinates x^3-2x^2-6z=4-2y^2
x3−2x2+2y2−6z−4=0x^3 -2x^2+2y^2 -6z-4=0x3−2x2+2y2−6z−4=0
Put x = r cos (A)
and, y = r sin (A)
and z =z, we get
(rcosA)3−2(rcosA)2+2(rsinA)2−6z−4=0(r cos A)^3 - 2 (r cos A)^2 + 2 (r sin A)^2 - 6z -4=0(rcosA)3−2(rcosA)2+2(rsinA)2−6z−4=0
r3cos3A−2r2cos2A+2r2sin2A−6z−4=0r^3 cos^3A - 2r^2 cos^2A + 2r^2 sin^2A - 6z-4=0r3cos3A−2r2cos2A+2r2sin2A−6z−4=0
r3cos3A−2r2(cos2A−sin2A)−6z−4=0r^3cos^3A - 2r^2 (cos^2A-sin^2A) - 6z-4=0r3cos3A−2r2(cos2A−sin2A)−6z−4=0
r3cos3A−2r2cos2A−6z−4=0r^3cos^3A -2 r^2cos2A - 6z-4=0r3cos3A−2r2cos2A−6z−4=0
Final Cylindrical equation:
r3cos3A−2r2cos2A−6z−4=0r^3cos^3A - 2r^2cos2A - 6z-4=0r3cos3A−2r2cos2A−6z−4=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment