a)
F(x)=8−3x+x2F′(x)=−3+2xAt critical point, derivative is 0−3+2x=02x=3x=1.5F(x)=8−3(1.5)+(1.5)2=5.75Critical point is (1.5,5.75)
b)
F(x)=x4−18x2+9F′(x)=4x3−36x4x3−36x=0x=0,3at x=0, F(x)=9at x=3, F(x)=-72Critical points are (0,9) and (3,-72)
c)
F(x)=x3−5x2−8x+3F′(x)=3x2−10x−83x2−10x−8=0x=4,3−2At x=4, F(x)=-2At x=3−2 F(x)=27157Critical points are (4,-2) and (3−2,27157)d)F(x)=x2+1x2has no critical pointe)F(x)=x2−1x2has no critical pointf)F(x)=(x2−1)3F′(x)=2x(x2−1)22x(x2−1)2=0x=0,−1,1critical points are (0,-1),(-1,0) and (1,0)
Comments