Question #230389

A voltage e=250sinωt+50sin(3ωt+pi/3)+20 sin(5ωt+(5pi/6)) is applied to a series Circuit of resistance 20Ω and an inductance of 0.05H. Take ω=314rad/s

3.1 Derive an expression for the current.

Calculate the following:

3.2 The rms value of the current and voltage.

3.3 The total power supplied.

3.4 The power factor.



1
Expert's answer
2021-08-28T06:16:15-0400

3.1

e=250sinωt+50sin(3ωt+π3)+20sin(5ωt+(5π6))I1=250sinωt20+j15.7=250202+15.72(sinωt38.130)=9.83sin(ωt38.13)I2=50sin3ωt+60020+j47.1=0.977sin(3ωt6.99)I3=80sin5ωt+150020+j78.5=0.246sin(5ωt74.3)ITotal=I1+I2+I3ITotal=9.83sin(ωt38.13)+0.977sin(3ωt6.99)+0.246sin(5ωt74.3)e=250\sinωt+50\sin(3ωt+\frac{\pi}{3})+20 \sin(5ωt+(\frac{5\pi}{6})) \\ I_1= \frac{250 \sin ωt}{20+j 15.7}=\frac{250}{\sqrt{20^2+15.7^2}}(\sin ωt-38.13^0)= 9.83 \sin(ωt -38.13)\\ I_2= \frac{50 \sin 3ωt+60^0}{20+j 47.1}=0.977 \sin(3ωt -6.99)\\ I_3= \frac{80 \sin 5ωt+150^0}{20+j78.5}=0.246 \sin(5ωt -74.3)\\ I_{Total}= I_1+I_2+I_3\\ I_{Total}=9.83 \sin(ωt -38.13)+0.977 \sin(3ωt -6.99)+0.246 \sin(5ωt -74.3)


3.2

Irms=(9.832)2+(0.9772)2+(0.2462)2=6.98AVrms=(2502)2+(502)2+(202)2=180.83VI_{rms}=\sqrt{(\frac{9.83}{\sqrt2})^2+(\frac{0.977}{\sqrt2})^2+(\frac{0.246}{\sqrt2})^2}=6.98 A\\ V_{rms}=\sqrt{(\frac{250}{\sqrt2})^2+(\frac{50}{\sqrt2})^2+(\frac{20}{\sqrt2})^2}=180.83V\\


3.3

PTOTAL=VrmsIrms=180.836.98=1253.15VAP_{TOTAL}=V_{rms}*I_{rms}=180.83*6.98=1253.15 VA


3.4

250sinωtϕ=tan1(ωLR)=38.13    cosϕ=0.7866 lagging50sin(3ωtπ3)ϕ=tan1(3ωLR)=66.99    cosϕ=0.3908 lagging20sin(5ωt+(5π6))ϕ=tan1(5ωLR)=75.7    cosϕ=0.2469 lagging250\sinωt\\ \phi= \tan^{-1}(\frac{ωL}{R})=38.13\\ \implies \cos \phi = 0.7866\space lagging\\ 50\sin(3ωt\frac{\pi}{3})\\ \phi= \tan^{-1}(\frac{3ωL}{R})=66.99\\ \implies \cos \phi = 0.3908\space lagging\\ 20 \sin(5ωt+(\frac{5\pi}{6})) \\ \phi= \tan^{-1}(\frac{5ωL}{R})=75.7\\ \implies \cos \phi = 0.2469 \space lagging\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Charmza
28.08.21, 16:37

Thanks for the answer, I fully understand

LATEST TUTORIALS
APPROVED BY CLIENTS