3.1
e = 250 sin ω t + 50 sin ( 3 ω t + π 3 ) + 20 sin ( 5 ω t + ( 5 π 6 ) ) I 1 = 250 sin ω t 20 + j 15.7 = 250 2 0 2 + 15. 7 2 ( sin ω t − 38.1 3 0 ) = 9.83 sin ( ω t − 38.13 ) I 2 = 50 sin 3 ω t + 6 0 0 20 + j 47.1 = 0.977 sin ( 3 ω t − 6.99 ) I 3 = 80 sin 5 ω t + 15 0 0 20 + j 78.5 = 0.246 sin ( 5 ω t − 74.3 ) I T o t a l = I 1 + I 2 + I 3 I T o t a l = 9.83 sin ( ω t − 38.13 ) + 0.977 sin ( 3 ω t − 6.99 ) + 0.246 sin ( 5 ω t − 74.3 ) e=250\sinωt+50\sin(3ωt+\frac{\pi}{3})+20 \sin(5ωt+(\frac{5\pi}{6})) \\
I_1= \frac{250 \sin ωt}{20+j 15.7}=\frac{250}{\sqrt{20^2+15.7^2}}(\sin ωt-38.13^0)= 9.83 \sin(ωt -38.13)\\
I_2= \frac{50 \sin 3ωt+60^0}{20+j 47.1}=0.977 \sin(3ωt -6.99)\\
I_3= \frac{80 \sin 5ωt+150^0}{20+j78.5}=0.246 \sin(5ωt -74.3)\\
I_{Total}= I_1+I_2+I_3\\
I_{Total}=9.83 \sin(ωt -38.13)+0.977 \sin(3ωt -6.99)+0.246 \sin(5ωt -74.3) e = 250 sin ω t + 50 sin ( 3 ω t + 3 π ) + 20 sin ( 5 ω t + ( 6 5 π )) I 1 = 20 + j 15.7 250 s i n ω t = 2 0 2 + 15. 7 2 250 ( sin ω t − 38.1 3 0 ) = 9.83 sin ( ω t − 38.13 ) I 2 = 20 + j 47.1 50 s i n 3 ω t + 6 0 0 = 0.977 sin ( 3 ω t − 6.99 ) I 3 = 20 + j 78.5 80 s i n 5 ω t + 15 0 0 = 0.246 sin ( 5 ω t − 74.3 ) I T o t a l = I 1 + I 2 + I 3 I T o t a l = 9.83 sin ( ω t − 38.13 ) + 0.977 sin ( 3 ω t − 6.99 ) + 0.246 sin ( 5 ω t − 74.3 )
3.2
I r m s = ( 9.83 2 ) 2 + ( 0.977 2 ) 2 + ( 0.246 2 ) 2 = 6.98 A V r m s = ( 250 2 ) 2 + ( 50 2 ) 2 + ( 20 2 ) 2 = 180.83 V I_{rms}=\sqrt{(\frac{9.83}{\sqrt2})^2+(\frac{0.977}{\sqrt2})^2+(\frac{0.246}{\sqrt2})^2}=6.98 A\\
V_{rms}=\sqrt{(\frac{250}{\sqrt2})^2+(\frac{50}{\sqrt2})^2+(\frac{20}{\sqrt2})^2}=180.83V\\ I r m s = ( 2 9.83 ) 2 + ( 2 0.977 ) 2 + ( 2 0.246 ) 2 = 6.98 A V r m s = ( 2 250 ) 2 + ( 2 50 ) 2 + ( 2 20 ) 2 = 180.83 V
3.3
P T O T A L = V r m s ∗ I r m s = 180.83 ∗ 6.98 = 1253.15 V A P_{TOTAL}=V_{rms}*I_{rms}=180.83*6.98=1253.15 VA P TOT A L = V r m s ∗ I r m s = 180.83 ∗ 6.98 = 1253.15 V A
3.4
250 sin ω t ϕ = tan − 1 ( ω L R ) = 38.13 ⟹ cos ϕ = 0.7866 l a g g i n g 50 sin ( 3 ω t π 3 ) ϕ = tan − 1 ( 3 ω L R ) = 66.99 ⟹ cos ϕ = 0.3908 l a g g i n g 20 sin ( 5 ω t + ( 5 π 6 ) ) ϕ = tan − 1 ( 5 ω L R ) = 75.7 ⟹ cos ϕ = 0.2469 l a g g i n g 250\sinωt\\
\phi= \tan^{-1}(\frac{ωL}{R})=38.13\\
\implies \cos \phi = 0.7866\space lagging\\
50\sin(3ωt\frac{\pi}{3})\\
\phi= \tan^{-1}(\frac{3ωL}{R})=66.99\\
\implies \cos \phi = 0.3908\space lagging\\
20 \sin(5ωt+(\frac{5\pi}{6})) \\
\phi= \tan^{-1}(\frac{5ωL}{R})=75.7\\
\implies \cos \phi = 0.2469 \space lagging\\ 250 sin ω t ϕ = tan − 1 ( R ω L ) = 38.13 ⟹ cos ϕ = 0.7866 l a gg in g 50 sin ( 3 ω t 3 π ) ϕ = tan − 1 ( R 3 ω L ) = 66.99 ⟹ cos ϕ = 0.3908 l a gg in g 20 sin ( 5 ω t + ( 6 5 π )) ϕ = tan − 1 ( R 5 ω L ) = 75.7 ⟹ cos ϕ = 0.2469 l a gg in g
Comments
Thanks for the answer, I fully understand