Answer to Question #212685 in Electrical Engineering for Haidi

Question #212685

In a P-Type semiconductor, the Fermi level in 0.3 eV above the valance band at a room temperature of 300 oK. Determine the new position of the Fermi level for temperature of a (350 oK) and (b) 400 oK.


1
Expert's answer
2021-07-04T19:54:02-0400

EF=EV+KTln(NvNA)EFEV=0.3eVT=300°KEFEV=KTln(NvNA)0.3=300Kln(NvNA)Kln(NcNA)=0.3300Kln(NcNA)=0.001(a)T=350°KEFEV=KTln(NvNA)EFEV=350Kln(NvNA)EFEV=350×0.001EFEV=0.35eV(b)T=400°KEFEV=KTln(NvNA)EFEV=400Kln(NvNA)EFEV=0.40eVE_F=E_V+KT\ln(\frac{N_v}{N_A})\\ E_F-E_V=0.3eV\\ T=300\degree{K}\\ E_F-E_V=KT\ln(\frac{N_v}{N_A})\\ 0.3=300K\ln(\frac{N_v}{N_A})\\ K\ln(\frac{N_c}{N_A})=\frac{0.3}{300}\\ K\ln(\frac{N_c}{N_A})=0.001\\ (a)\\ T=350\degree{K}\\ E_F-E_V=KT\ln(\frac{N_v}{N_A})\\ E_F-E_V=350K\ln(\frac{N_v}{N_A})\\ E_F-E_V=350\times 0.001\\ E_F-E_V=0.35eV\\ (b)\\ T=400\degree{K}\\ E_F-E_V=KT\ln(\frac{N_v}{N_A})\\ E_F-E_V=400K\ln(\frac{N_v}{N_A})\\ E_F-E_V=0.40eV



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment