Question #205446

(a) A silicon pn junction at T = 300 K has a reverse-saturation current of

IS = 2 × 10−14 A. Determine the required forward-bias voltage to produce a

current of (i) ID = 50 μA and (ii) ID = 1 mA. (b) Repeat part (a) for

IS = 2 × 10−12 A


1
Expert's answer
2021-06-11T06:11:02-0400

 Part a

(i) ID = 50 μA

50106=(21014)[evD0.0261]50\cdot 10^{-6}=\left(2\cdot 10^{-14}\right)\left[e^{\frac{v_D}{0.026}}-1\right]

50106(21014)+1=e(vD0.026)\frac{50\cdot 10^{-6}}{\left(2\cdot \:10^{-14}\right)}+1=e^{\left(\frac{v_D}{0.026}\right)}

25108=e(vD0.026)25\cdot 10^8=e^{\left(\frac{v_D}{0.026}\right)}

ln(25108)=vD0.026\ln \left(25\cdot \:10^8\right)=\frac{v_D}{0.026}

vD0.026=ln(25100000000)\frac{v_D}{0.026}=\ln \left(25\cdot \:100000000\right)

vD=0.026ln(2500000000)v_D=0.026\ln \left(2500000000\right)

vD=0.56262Vv_D=0.56262 V

(ii) ID = 1 mA.

103=(21014)[evD0.0261]10^{-3}=\left(2\cdot 10^{-14}\right)\left[e^{\frac{v_D}{0.026}}-1\right]

ln(0.51011)=vD0.026\ln \left(0.5\cdot \:10^{11}\right)=\frac{v_D}{0.026}

vD0.026=ln(0.51011)\frac{v_D}{0.026}=\ln \left(0.5\cdot \:10^{11}\right)

vD=ln(100.2860.50.026)v_D=\ln \left(10^{0.286}\cdot \:0.5^{0.026}\right)

vD=0.64051Vv_D=0.64051V

Part b

IS=2×1012AI_S = 2 × 10^{−12} A

i) 50106=(21012)(ev0.0261)50\cdot \:10^{-6}=\left(2\cdot \:10^{-12}\right)\left(e^{\frac{v}{0.026}}-1\right)

21012(evD0.0261)=501062\cdot \:10^{-12}\left(e^{\frac{v_D}{0.026}}-1\right)=50\cdot \:10^{-6}

21012(evD0.0261)21012=5010621012\frac{2\cdot \:10^{-12}\left(e^{\frac{v_D}{0.026}}-1\right)}{2\cdot \:10^{-12}}=\frac{50\cdot \:10^{-6}}{2\cdot \:10^{-12}}

evD0.0261=251061012e^{\frac{v_D}{0.026}}-1=\frac{25\cdot \:10^{-6}}{10^{-12}}

vD0.026=ln(25000001)\frac{v_D}{0.026}=\ln \left(25000001\right)

vD=0.44289v_D=0.44289

ii) 103=(21012)(evD0.0261)10^{-3}=\left(2\cdot \:10^{-12}\right)\left(e^{\frac{v_D}{0.026}}-1\right)

21012(evD0.0261)=1032\cdot \:10^{-12}\left(e^{\frac{v_D}{0.026}}-1\right)=10^{-3}

21012(evD0.0261)21012=10321012\frac{2\cdot \:10^{-12}\left(e^{\frac{v_D}{0.026}}-1\right)}{2\cdot \:10^{-12}}=\frac{10^{-3}}{2\cdot \:10^{-12}}

evD0.0261=10321012e^{\frac{v_D}{0.026}}-1=\frac{10^{-3}}{2\cdot \:10^{-12}}

vD=0.026ln(500000001)v_D=0.026\ln \left(500000001\right)

vD=0.52078Vv_D=0.52078 V


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS