Find out inverse Laplace transforms of the following provided the
systems assuming a) system is stable, b) assuming system is causal.
2
H(s) -
(5-1)(3-3)
1
(s + 1)(3+3)
H(s) =
(s + 1)(-3)
Given:
r(t)∗h(t)=b(t)r(t) ∗ h(t) = b(t)r(t)∗h(t)=b(t)
⟹ R(s)H(s)=B(s)\implies R(s)H(s) = B(s)⟹R(s)H(s)=B(s)
R(s)=1s2R(s) =\frac{1}{s^2}R(s)=s21
B(s)=ss2+5s+6B(s) = \frac{s}{s^2+5s+6}B(s)=s2+5s+6s
⟹ H(s)=s3s2+5s+6\implies H(s) =\frac{s^3}{s^2+5 s+6}⟹H(s)=s2+5s+6s3
Y(s)=U(s)X(s)Y (s) = U(s)X(s)Y(s)=U(s)X(s)
⟹ Y(s)=s2s2+5s+6\implies Y (s) =\frac{s^2}{s^2+5 s+6}⟹Y(s)=s2+5s+6s2
Taking Inverse Laplace Transform
⟹ y(t)=4e−2tu(t)−9e−3tu(t)+δ(t)\implies y(t) = 4e^{−2t}u(t) − 9e^{−3t}u(t) + δ(t)⟹y(t)=4e−2tu(t)−9e−3tu(t)+δ(t)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments