Question #204818
  • Find the volume of the solid generated by revolving the area enclosed between the evolute, 27ay^2 = 4(x-2a) ^3 and the parabola, y^2 = 4ax about x-axis.
1
Expert's answer
2021-06-11T06:10:33-0400

V=a2a(2ax)dxV=\int_a^{2a}(2 \sqrt{ax})dx


V=[2a0.52a1.5]a2aV=[2a^{0.5}*2a^{1.5}]_a^{2a}


V=2a32xa2aV=\frac{2 \sqrt{a}}{3}*2*x|_a^{2a}

V=4a3[(2a)1.5a1.5]V=\frac{4 \sqrt{a}}{3}[(2a)^{1.5}-a^{1.5}]


V=4a3[22aaaa]V=\frac{4 \sqrt{a}}{3}[2\sqrt{2}*a\sqrt{a}-a\sqrt{a}]


V=4aa3a[221]V=\frac{4 a\sqrt{a}}{3}\sqrt{a}[2\sqrt{2}-1]


V=4a23[221]V=\frac{4 a^2}{3}[2\sqrt{2}-1]


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS