Question #203301

In a three-phase, four-wire system, the currents in lines A, B and C under abnormal conditions of loading were as follows:

 Ia = 100∠ 30°  A;            Ib=50∠ 300° A ;    and       Ic=30∠ 180 ° A.

 Determine the zero-phase sequence current  (Iao) in line A in polar form.  


1
Expert's answer
2021-06-07T05:46:46-0400

Write the components matrix

[IaoIa1Ia2]=[1111kk21k2k][IAIBIC]\begin{bmatrix} I_{a_{o} } \\ I_{a_{1} } \\ I_{a_{2} } \end{bmatrix}=\begin{bmatrix} 1 &1&1\\ 1&k&k^2 \\ 1&k^2&k \end{bmatrix}\begin{bmatrix} I_A \\ I_B \\ I_C \end{bmatrix}

k=1120o;k2=1120ok=1\angle120^o; k^2=1\angle120^o

IA=Iao+Ia1+Ia2I_A= I_{a_{o} } + I_{a_{1} } + I_{a_{2} }

Iao=13[Ia+Ib+Ic]=81.7774.693=81.7773=27.2594.693oI_{a_{o} }=\frac{1}{3} [I_a + I_b+I_c]= 81.777\angle4.693=\frac{81.777}{3}=27.259\angle4.693^o

Iao=13[IA+kIB+k2IC]=13[10030o+120o+50300o+30180o]=173.94443.29oA3=57.9843.29oAI_{a_{o} }=\frac{1}{3} [I_A +k I_B+k^2I_C]=\frac{1}{3} [100\angle30^o+\angle120^o+50\angle300^o+30\angle180^o]=\frac{173.944\angle43.29^oA}{3} =57.98\angle43.29^oA

Ia2=13[IA+k2IB+kIC]=13[10030o+120o+50300o+120o+30180o]=56.92924.96oA=18.97324.96I_{a_{2} }=\frac{1}{3} [I_A +k^2 I_B+kI_C]=\frac{1}{3} [100\angle30^o+\angle-120^o+50\angle300^o+\angle120^o +30\angle180^o]=\frac{56.929\angle24.96^oA} =18.973\angle24.96




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS