Question #201803

 A sinusoidal voltage having a maximum amplitude of 625 V is applied to the terminals of a 50 Ω

 The average power delivered to the resistor is:


 Select one:

 a 19531.25 W

 b 6510.42 W

 c 3906.25 W

 d 9765.63 W

 e 4882.61 W


1
Expert's answer
2021-06-04T16:12:02-0400

Given that


v(t)=vmcos(ωt)=625cos(ωt) Vv(t)=v_m cos(\omega t)=625cos(\omega t) \space V

where


vm=625 Vmaximum voltage amplitudev_m =625 \space V- maximum \space voltage \space amplitudeω=2πT, Tharmonic period\omega=\frac {2 \pi} T, \space T-harmonic \space period


from Ohm's law


i(t)=v(t)Ri(t)=\frac {v(t)}{R}

the instantaneous power p(t) absorbed by an element is the product of the instantaneous voltage v(t) across the element and the instantaneous current i(t) through it


p(t)=v(t) i(t)=v2(t)Rp(t)=v(t) \space i(t)=\frac {v^2 (t)}{R}

Thus, the average power is given by


P=1T0Tp(t)dt=1T0Tv2(t)RdtP=\frac 1 T \int_0^T p(t)dt=\frac 1 T \int_0^T \frac{v^2(t)}{R}dt

for a sinusoidal voltage with ω=2π/T


P=vm22R=625V625V250Ω=3906.25 WP=\frac {v_m^2}{2R}=\frac {625V \cdot 625V}{2 \cdot50\Omega}=3906.25 \space W

Answer: c) 3906.25 W


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS