V = 100 V f = 50 H z V=100V\newline f=50Hz V = 100 V f = 50 Hz
CaseA:
I a = 8 A P a = 120 W Ia=8A\newline Pa=120W I a = 8 A P a = 120 W
R a = P a / I a 2 = 120 / 8 2 = 1.875 Ω Ra=Pa/Ia^2=120/8^2=1.875\Omega R a = P a / I a 2 = 120/ 8 2 = 1.875Ω
Z a = V / I a = 100 / 8 = 12.5 Ω Za=V/Ia=100/8=12.5\Omega Z a = V / I a = 100/8 = 12.5Ω
X a = Z a 2 − R a 2 = 12. 5 2 − 1.87 5 2 = 12.36 Ω Xa=\sqrt{Za^2-Ra^2} =\sqrt{12.5^2-1.875^2} =12.36\Omega X a = Z a 2 − R a 2 = 12. 5 2 − 1.87 5 2 = 12.36Ω
⟹ L a ω = 12.36 , L a = 12.36 / 2 π 50 = 39.34 m H \implies La\omega=12.36, La=12.36/2\pi50=39.34mH ⟹ L aω = 12.36 , L a = 12.36/2 π 50 = 39.34 m H
CaseB:
I b = 10 A P b = 500 W Ib=10A\newline Pb=500W I b = 10 A P b = 500 W
R b = P b / I b 2 = 500 / 1 0 2 = 5 Ω Rb=Pb/Ib^2=500/10^2=5\Omega R b = P b / I b 2 = 500/1 0 2 = 5Ω
Z b = V / I b = 100 / 10 = 10 Ω Zb=V/Ib=100/10=10\Omega Z b = V / I b = 100/10 = 10Ω
X b = Z b 2 − R b 2 = 1 0 2 − 5 2 = 8.66 Ω Xb=\sqrt{Zb^2-Rb^2} =\sqrt{10^2-5^2} =8.66\Omega X b = Z b 2 − R b 2 = 1 0 2 − 5 2 = 8.66Ω
⟹ L b ω = 8.66 , L b = 8.66 / 2 π 50 = 27.56 m H \implies Lb\omega=8.66, Lb=8.66/2\pi50=27.56mH ⟹ L bω = 8.66 , L b = 8.66/2 π 50 = 27.56 m H
When La and Lb are connected in series current I a b = V / ( X a + X b ) = 100 / ( 12.36 + 8.66 ) = 4.76 A Iab=V/(Xa+Xb) =100/(12.36+8.66) =4.76A I ab = V / ( X a + X b ) = 100/ ( 12.36 + 8.66 ) = 4.76 A
Power= 0 , as both are inductors there is no power loss.
Comments