1.Reflection coefficient:
Γ(z)=ΓLej2βz=ΓLejθ
we have: θ=0.7270°
Γ(z)=V0+V0−ej2βz
V0+=V0−=20 V
VSWR=1−∣ΓL∣1+∣ΓL∣
∣ΓL∣=1⟹VSWR=∞
2.
∣V(z)∣=∣V0+∣∣1+Γ(z)∣
∣1+Γ(z)∣=(1+cosθ)2+sin2θ=2
∣V(z)∣=20⋅2=40 V
∣I(z)∣=Z0∣V0+∣∣1−Γ(z)∣
∣1−Γ(z)∣=(1−cosθ)2+sin2θ=0.01
∣I(z)∣=20⋅0.01/Z0=0.2/Z0 A
3.
for d=0 :
V(z)=V0+=20 V
I(z)=V0+/Z0=20/Z0 V
for d=1/8 :
∣1+Γ(z)∣=(1+cos(θ/8))2+sin2(θ/8)=2
∣V(z)∣=20⋅2=40 V
∣1−Γ(z)∣=(1−cos(θ/8))2+sin2(θ/8)=0.002
∣I(z)∣=20⋅0.002/Z0=0.04/Z0 A
for d=1/4 :
∣1+Γ(z)∣=(1+cos(θ/4))2+sin2(θ/4)=2
∣V(z)∣=20⋅2=40 V
∣1−Γ(z)∣=(1−cos(θ/4))2+sin2(θ/4)=0.003
∣I(z)∣=20⋅0.003/Z0=0.06/Z0 A
for d=31/8 :
∣1+Γ(z)∣=(1+cos(31θ/8))2+sin2(31θ/8)=2
∣V(z)∣=20⋅2=40 V
∣1−Γ(z)∣=(1−cos(31θ/8))2+sin2(31θ/8)=0.05
∣I(z)∣=20⋅0.05/Z0=1/Z0 A
for d=1/2 :
∣1+Γ(z)∣=(1+cos(θ/2))2+sin2(θ/2)=2
∣V(z)∣=20⋅2=40 V
∣1−Γ(z)∣=(1−cos(θ/2))2+sin2(θ/2)=0.006
∣I(z)∣=20⋅0.006/Z0=0.12/Z0 A
Vmax=40 V at d=1/8,1/4,1/2,31/8
Vmin=20 V at d=0
Imax=20/Z0 A at d=0
Imin=0.006/Z0 A at d=1/2
4.
5.
Power equals area of rectangle ABCD on Crank diagram.
P=∣V(z)∣∣I(z)∣=40⋅0.2/Z0=8/Z0 W
6.For voltage:
SWR=∣V(z)∣d∣V(z)∣max
where ∣V(z)∣d is voltage for different d .
d=0 : SWR=1 , d=1/8,1/4,1/2 : SWR=2
For current:
SWR=∣I(z)∣d∣I(z)∣max
where ∣I(z)∣d is current for different d .
d=0 : SWR=1, d=1/8 : SWR=20/0.04=500
d=1/4 : SWR=20/0.06=333
d=1/2 : SWR=20/0.006=3333
7.If the load is changed to ZL=Z0 :
ΓL=ZL+Z0Zl−Z0=0
VSWR=1
V(z)=V0+=20 V
I(z)=V0+/Z0=20/Z0 V
SWR=1
for all values of d
Comments