1.Reflection coefficient:
Γ ( z ) = Γ L e j 2 β z = Γ L e j θ \Gamma(z)=\Gamma_Le^{j2\beta z}=\Gamma_Le^{j\theta} Γ ( z ) = Γ L e j 2 β z = Γ L e j θ
we have: θ = 0.7270 ° \theta=0.7270\degree θ = 0.7270°
Γ ( z ) = V 0 − V 0 + e j 2 β z \Gamma(z)=\frac{V_0^-}{V_0^+}e^{j2\beta z} Γ ( z ) = V 0 + V 0 − e j 2 β z
V 0 + = V 0 − = 20 V V_0^+=V_0^-=20\ V V 0 + = V 0 − = 20 V
V S W R = 1 + ∣ Γ L ∣ 1 − ∣ Γ L ∣ VSWR=\frac{1+|\Gamma_L|}{1-|\Gamma_L|} V S W R = 1 − ∣ Γ L ∣ 1 + ∣ Γ L ∣
∣ Γ L ∣ = 1 ⟹ V S W R = ∞ |\Gamma_L|=1\implies VSWR=\infin ∣ Γ L ∣ = 1 ⟹ V S W R = ∞
2.
∣ V ( z ) ∣ = ∣ V 0 + ∣ ∣ 1 + Γ ( z ) ∣ |V(z)|=|V_0^+||1+\Gamma(z)| ∣ V ( z ) ∣ = ∣ V 0 + ∣∣1 + Γ ( z ) ∣
∣ 1 + Γ ( z ) ∣ = ( 1 + c o s θ ) 2 + s i n 2 θ = 2 |1+\Gamma(z)|=\sqrt{(1+cos\theta)^2+sin^2\theta}=2 ∣1 + Γ ( z ) ∣ = ( 1 + cos θ ) 2 + s i n 2 θ = 2
∣ V ( z ) ∣ = 20 ⋅ 2 = 40 V |V(z)|=20\cdot2=40\ V ∣ V ( z ) ∣ = 20 ⋅ 2 = 40 V
∣ I ( z ) ∣ = ∣ V 0 + ∣ Z 0 ∣ 1 − Γ ( z ) ∣ |I(z)|=\frac{|V_0^+|}{Z_0}|1-\Gamma(z)| ∣ I ( z ) ∣ = Z 0 ∣ V 0 + ∣ ∣1 − Γ ( z ) ∣
∣ 1 − Γ ( z ) ∣ = ( 1 − c o s θ ) 2 + s i n 2 θ = 0.01 |1-\Gamma(z)|=\sqrt{(1-cos\theta)^2+sin^2\theta}=0.01 ∣1 − Γ ( z ) ∣ = ( 1 − cos θ ) 2 + s i n 2 θ = 0.01
∣ I ( z ) ∣ = 20 ⋅ 0.01 / Z 0 = 0.2 / Z 0 A |I(z)|=20\cdot0.01/Z_0=0.2/Z_0\ A ∣ I ( z ) ∣ = 20 ⋅ 0.01/ Z 0 = 0.2/ Z 0 A
3.
for d = 0 d=0 d = 0 :
V ( z ) = V 0 + = 20 V V(z)=V_0^+=20\ V V ( z ) = V 0 + = 20 V
I ( z ) = V 0 + / Z 0 = 20 / Z 0 V I(z)=V_0^+/Z_0=20/Z_0\ V I ( z ) = V 0 + / Z 0 = 20/ Z 0 V
for d = 1 / 8 d=1/8 d = 1/8 :
∣ 1 + Γ ( z ) ∣ = ( 1 + c o s ( θ / 8 ) ) 2 + s i n 2 ( θ / 8 ) = 2 |1+\Gamma(z)|=\sqrt{(1+cos(\theta/8))^2+sin^2(\theta/8)}=2 ∣1 + Γ ( z ) ∣ = ( 1 + cos ( θ /8 ) ) 2 + s i n 2 ( θ /8 ) = 2
∣ V ( z ) ∣ = 20 ⋅ 2 = 40 V |V(z)|=20\cdot2=40\ V ∣ V ( z ) ∣ = 20 ⋅ 2 = 40 V
∣ 1 − Γ ( z ) ∣ = ( 1 − c o s ( θ / 8 ) ) 2 + s i n 2 ( θ / 8 ) = 0.002 |1-\Gamma(z)|=\sqrt{(1-cos(\theta/8))^2+sin^2(\theta/8)}=0.002 ∣1 − Γ ( z ) ∣ = ( 1 − cos ( θ /8 ) ) 2 + s i n 2 ( θ /8 ) = 0.002
∣ I ( z ) ∣ = 20 ⋅ 0.002 / Z 0 = 0.04 / Z 0 A |I(z)|=20\cdot0.002/Z_0=0.04/Z_0\ A ∣ I ( z ) ∣ = 20 ⋅ 0.002/ Z 0 = 0.04/ Z 0 A
for d = 1 / 4 d=1/4 d = 1/4 :
∣ 1 + Γ ( z ) ∣ = ( 1 + c o s ( θ / 4 ) ) 2 + s i n 2 ( θ / 4 ) = 2 |1+\Gamma(z)|=\sqrt{(1+cos(\theta/4))^2+sin^2(\theta/4)}=2 ∣1 + Γ ( z ) ∣ = ( 1 + cos ( θ /4 ) ) 2 + s i n 2 ( θ /4 ) = 2
∣ V ( z ) ∣ = 20 ⋅ 2 = 40 V |V(z)|=20\cdot2=40\ V ∣ V ( z ) ∣ = 20 ⋅ 2 = 40 V
∣ 1 − Γ ( z ) ∣ = ( 1 − c o s ( θ / 4 ) ) 2 + s i n 2 ( θ / 4 ) = 0.003 |1-\Gamma(z)|=\sqrt{(1-cos(\theta/4))^2+sin^2(\theta/4)}=0.003 ∣1 − Γ ( z ) ∣ = ( 1 − cos ( θ /4 ) ) 2 + s i n 2 ( θ /4 ) = 0.003
∣ I ( z ) ∣ = 20 ⋅ 0.003 / Z 0 = 0.06 / Z 0 A |I(z)|=20\cdot0.003/Z_0=0.06/Z_0\ A ∣ I ( z ) ∣ = 20 ⋅ 0.003/ Z 0 = 0.06/ Z 0 A
for d = 31 / 8 d=31/8 d = 31/8 :
∣ 1 + Γ ( z ) ∣ = ( 1 + c o s ( 31 θ / 8 ) ) 2 + s i n 2 ( 31 θ / 8 ) = 2 |1+\Gamma(z)|=\sqrt{(1+cos(31\theta/8))^2+sin^2(31\theta/8)}=2 ∣1 + Γ ( z ) ∣ = ( 1 + cos ( 31 θ /8 ) ) 2 + s i n 2 ( 31 θ /8 ) = 2
∣ V ( z ) ∣ = 20 ⋅ 2 = 40 V |V(z)|=20\cdot2=40\ V ∣ V ( z ) ∣ = 20 ⋅ 2 = 40 V
∣ 1 − Γ ( z ) ∣ = ( 1 − c o s ( 31 θ / 8 ) ) 2 + s i n 2 ( 31 θ / 8 ) = 0.05 |1-\Gamma(z)|=\sqrt{(1-cos(31\theta/8))^2+sin^2(31\theta/8)}=0.05 ∣1 − Γ ( z ) ∣ = ( 1 − cos ( 31 θ /8 ) ) 2 + s i n 2 ( 31 θ /8 ) = 0.05
∣ I ( z ) ∣ = 20 ⋅ 0.05 / Z 0 = 1 / Z 0 A |I(z)|=20\cdot0.05/Z_0=1/Z_0\ A ∣ I ( z ) ∣ = 20 ⋅ 0.05/ Z 0 = 1/ Z 0 A
for d = 1 / 2 d=1/2 d = 1/2 :
∣ 1 + Γ ( z ) ∣ = ( 1 + c o s ( θ / 2 ) ) 2 + s i n 2 ( θ / 2 ) = 2 |1+\Gamma(z)|=\sqrt{(1+cos(\theta/2))^2+sin^2(\theta/2)}=2 ∣1 + Γ ( z ) ∣ = ( 1 + cos ( θ /2 ) ) 2 + s i n 2 ( θ /2 ) = 2
∣ V ( z ) ∣ = 20 ⋅ 2 = 40 V |V(z)|=20\cdot2=40\ V ∣ V ( z ) ∣ = 20 ⋅ 2 = 40 V
∣ 1 − Γ ( z ) ∣ = ( 1 − c o s ( θ / 2 ) ) 2 + s i n 2 ( θ / 2 ) = 0.006 |1-\Gamma(z)|=\sqrt{(1-cos(\theta/2))^2+sin^2(\theta/2)}=0.006 ∣1 − Γ ( z ) ∣ = ( 1 − cos ( θ /2 ) ) 2 + s i n 2 ( θ /2 ) = 0.006
∣ I ( z ) ∣ = 20 ⋅ 0.006 / Z 0 = 0.12 / Z 0 A |I(z)|=20\cdot0.006/Z_0=0.12/Z_0\ A ∣ I ( z ) ∣ = 20 ⋅ 0.006/ Z 0 = 0.12/ Z 0 A
V m a x = 40 V V_{max}=40\ V V ma x = 40 V at d = 1 / 8 , 1 / 4 , 1 / 2 , 31 / 8 d=1/8,1/4,1/2,31/8 d = 1/8 , 1/4 , 1/2 , 31/8
V m i n = 20 V V_{min}=20\ V V min = 20 V at d = 0 d=0 d = 0
I m a x = 20 / Z 0 A I_{max}=20/Z_0\ A I ma x = 20/ Z 0 A at d = 0 d=0 d = 0
I m i n = 0.006 / Z 0 A I_{min}=0.006/Z_0\ A I min = 0.006/ Z 0 A at d = 1 / 2 d=1/2 d = 1/2
4.
5.
Power equals area of rectangle ABCD on Crank diagram.
P = ∣ V ( z ) ∣ ∣ I ( z ) ∣ = 40 ⋅ 0.2 / Z 0 = 8 / Z 0 W P=|V(z)||I(z)|=40\cdot0.2/Z_0=8/Z_0\ W P = ∣ V ( z ) ∣∣ I ( z ) ∣ = 40 ⋅ 0.2/ Z 0 = 8/ Z 0 W
6.For voltage:
S W R = ∣ V ( z ) ∣ m a x ∣ V ( z ) ∣ d SWR=\frac{|V(z)|{max}}{|V(z)|_d} S W R = ∣ V ( z ) ∣ d ∣ V ( z ) ∣ ma x
where ∣ V ( z ) ∣ d |V(z)|_d ∣ V ( z ) ∣ d is voltage for different d d d .
d = 0 d=0 d = 0 : S W R = 1 SWR=1 S W R = 1 , d = 1 / 8 , 1 / 4 , 1 / 2 d=1/8,1/4,1/2 d = 1/8 , 1/4 , 1/2 : S W R = 2 SWR=2 S W R = 2
For current:
S W R = ∣ I ( z ) ∣ m a x ∣ I ( z ) ∣ d SWR=\frac{|I(z)|{max}}{|I(z)|_d} S W R = ∣ I ( z ) ∣ d ∣ I ( z ) ∣ ma x
where ∣ I ( z ) ∣ d |I(z)|_d ∣ I ( z ) ∣ d is current for different d d d .
d = 0 d=0 d = 0 : S W R = 1 SWR=1 S W R = 1 , d = 1 / 8 d=1/8 d = 1/8 : S W R = 20 / 0.04 = 500 SWR=20/0.04=500 S W R = 20/0.04 = 500
d = 1 / 4 d=1/4 d = 1/4 : S W R = 20 / 0.06 = 333 SWR=20/0.06=333 S W R = 20/0.06 = 333
d = 1 / 2 d=1/2 d = 1/2 : S W R = 20 / 0.006 = 3333 SWR=20/0.006=3333 S W R = 20/0.006 = 3333
7.If the load is changed to Z L = Z 0 Z_L=Z_0 Z L = Z 0 :
Γ L = Z l − Z 0 Z L + Z 0 = 0 \Gamma_L=\frac{Z_l-Z_0}{Z_L+Z_0}=0 Γ L = Z L + Z 0 Z l − Z 0 = 0
V S W R = 1 VSWR=1 V S W R = 1
V ( z ) = V 0 + = 20 V V(z)=V_0^+=20\ V V ( z ) = V 0 + = 20 V
I ( z ) = V 0 + / Z 0 = 20 / Z 0 V I(z)=V_0^+/Z_0=20/Z_0\ V I ( z ) = V 0 + / Z 0 = 20/ Z 0 V
SWR=1
for all values of d d d
Comments