Given data
Mass of air = 1 kg
Initial temperature T1 = 150 + 273 = 423 K
Initial pressure P1 = 4.8 bar
Final temperature T2 = 200 + 273 = 473 K
The container is rigid (volume is constant)
From the ideal gas equation
"\\frac{P1V1}{T1} = \\frac{P2V2}{T2}"
"P2 = P1\\times \\frac{T2}{T1}"
"= 4.8 bar x (\\frac{473}{423})"
= 5.37 bar
For isochoric process
Entropy change "S = Cv ln(\\frac{T2}{T1})"
"= 0.718 kJ\/kgK \\times ln (\\frac{473}{423})"
= 0.08 kJ/kgK
Average temperature T = "\\frac{(473 + 423)}{2} = 448 K"
Heat supplied = "T \\times S"
"= 448 K x 0.08 kJ\/kgK\n\n= 35.9 kJ\/kg"
Comments
Leave a comment