a)
b) v=V0×e−tτv=V_0\times e^{\frac{-t}{\tau}}v=V0×eτ−t ;
1) ∂v∂V0=e−tτ\frac{\partial v}{\partial V_0}= e^{\frac{-t}{\tau}}∂V0∂v=eτ−t ;
2)∂v∂t=−V0τ×e−tτ\frac{\partial v}{\partial t}= -\frac{V_0}{\tau}\times e^{\frac{-t}{\tau}}∂t∂v=−τV0×eτ−t ;
3) ∂v∂t=−V0×t×e−tτ\frac{\partial v}{\partial t}= -V_0\times t \times e^{\frac{-t}{\tau}}∂t∂v=−V0×t×eτ−t ;
c) v′=−6×e−t2v^{\prime}=-6\times e^{-\frac{t}{2}}v′=−6×e−2t
v′(2)=−2.21v^{\prime}(2)=-2.21v′(2)=−2.21 ;
v′(4)=−0.81v^{\prime}(4)=-0.81v′(4)=−0.81 ;
d) Derivative equal to the gradient from t
e) v=V0τ2×e−tτv=\frac{V_0}{\tau^2}\times e^{-\frac{t}{\tau}}v=τ2V0×e−τt
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments