A = ( 2 − 1 − 1 1 4 1 − 1 − 1 2 ) = ( 0 − 1 − 1 6 4 1 0 − 1 2 ) = ( 0 − 1 − 1 6 4 1 0 0 3 ) A=\begin{pmatrix} 2 & -1 & -1 \\
1 & 4 & 1 \\
-1 & -1 & 2\end{pmatrix}  =  \begin{pmatrix} 0 & -1 & -1 \\
6 & 4 & 1 \\
0 & -1 & 2\end{pmatrix} = \begin{pmatrix} 0 & -1 & -1 \\
6 & 4 & 1 \\
0 & 0 & 3\end{pmatrix} A = ⎝ ⎛  2 1 − 1  − 1 4 − 1  − 1 1 2  ⎠ ⎞  = ⎝ ⎛  0 6 0  − 1 4 − 1  − 1 1 2  ⎠ ⎞  = ⎝ ⎛  0 6 0  − 1 4 0  − 1 1 3  ⎠ ⎞  
  ( 0 − 1 − 1 6 4 1 0 0 3 ) = ( 0 − 1 − 1 6 3 0 0 0 3 ) = ( 6 2 − 1 6 3 0 0 0 3 ) \begin{pmatrix} 0 & -1 & -1 \\
6 & 4 & 1 \\
0 & 0 & 3\end{pmatrix} = \begin{pmatrix} 0 & -1 & -1 \\
6 & 3 & 0 \\
0 & 0 & 3\end{pmatrix} =  \begin{pmatrix} 6 & 2 & -1 \\
6 & 3 & 0 \\
0 & 0 & 3\end{pmatrix} ⎝ ⎛  0 6 0  − 1 4 0  − 1 1 3  ⎠ ⎞  = ⎝ ⎛  0 6 0  − 1 3 0  − 1 0 3  ⎠ ⎞  = ⎝ ⎛  6 6 0  2 3 0  − 1 0 3  ⎠ ⎞  
= ( 6 2 0 6 3 0 0 0 3 ) = ( 2 2 0 0 3 0 0 0 3 ) = ( 2 0 0 0 3 0 0 0 3 ) = \begin{pmatrix} 6 & 2 & 0 \\
6 & 3 & 0 \\
0 & 0 & 3\end{pmatrix} =  \begin{pmatrix} 2 & 2 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3\end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\
0& 3 & 0 \\
0 & 0 & 3\end{pmatrix} = ⎝ ⎛  6 6 0  2 3 0  0 0 3  ⎠ ⎞  = ⎝ ⎛  2 0 0  2 3 0  0 0 3  ⎠ ⎞  = ⎝ ⎛  2 0 0  0 3 0  0 0 3  ⎠ ⎞  
Since A is diagonal now, it is easy to find A to any power.
A 2345 = ( 2 2345 0 0 0 3 2345 0 0 0 3 2345 ) A^{2345} =\begin{pmatrix} 2^{2345} & 0 & 0 \\
0& 3^{2345} & 0 \\
0 & 0 & 3^{2345}\end{pmatrix} A 2345 = ⎝ ⎛  2 2345 0 0  0 3 2345 0  0 0 3 2345  ⎠ ⎞  
Comments