A = ( 2 − 1 − 1 1 4 1 − 1 − 1 2 ) = ( 0 − 1 − 1 6 4 1 0 − 1 2 ) = ( 0 − 1 − 1 6 4 1 0 0 3 ) A=\begin{pmatrix} 2 & -1 & -1 \\
1 & 4 & 1 \\
-1 & -1 & 2\end{pmatrix} = \begin{pmatrix} 0 & -1 & -1 \\
6 & 4 & 1 \\
0 & -1 & 2\end{pmatrix} = \begin{pmatrix} 0 & -1 & -1 \\
6 & 4 & 1 \\
0 & 0 & 3\end{pmatrix} A = ⎝ ⎛ 2 1 − 1 − 1 4 − 1 − 1 1 2 ⎠ ⎞ = ⎝ ⎛ 0 6 0 − 1 4 − 1 − 1 1 2 ⎠ ⎞ = ⎝ ⎛ 0 6 0 − 1 4 0 − 1 1 3 ⎠ ⎞ =
( 0 − 1 − 1 6 4 1 0 0 3 ) = ( 0 − 1 − 1 6 3 0 0 0 3 ) = ( 6 2 − 1 6 3 0 0 0 3 ) \begin{pmatrix} 0 & -1 & -1 \\
6 & 4 & 1 \\
0 & 0 & 3\end{pmatrix} = \begin{pmatrix} 0 & -1 & -1 \\
6 & 3 & 0 \\
0 & 0 & 3\end{pmatrix} = \begin{pmatrix} 6 & 2 & -1 \\
6 & 3 & 0 \\
0 & 0 & 3\end{pmatrix} ⎝ ⎛ 0 6 0 − 1 4 0 − 1 1 3 ⎠ ⎞ = ⎝ ⎛ 0 6 0 − 1 3 0 − 1 0 3 ⎠ ⎞ = ⎝ ⎛ 6 6 0 2 3 0 − 1 0 3 ⎠ ⎞ =
= ( 6 2 0 6 3 0 0 0 3 ) = ( 2 2 0 0 3 0 0 0 3 ) = ( 2 0 0 0 3 0 0 0 3 ) = \begin{pmatrix} 6 & 2 & 0 \\
6 & 3 & 0 \\
0 & 0 & 3\end{pmatrix} = \begin{pmatrix} 2 & 2 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3\end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\
0& 3 & 0 \\
0 & 0 & 3\end{pmatrix} = ⎝ ⎛ 6 6 0 2 3 0 0 0 3 ⎠ ⎞ = ⎝ ⎛ 2 0 0 2 3 0 0 0 3 ⎠ ⎞ = ⎝ ⎛ 2 0 0 0 3 0 0 0 3 ⎠ ⎞
Since A is diagonal now, it is easy to find A to any power.
A 2345 = ( 2 2345 0 0 0 3 2345 0 0 0 3 2345 ) A^{2345} =\begin{pmatrix} 2^{2345} & 0 & 0 \\
0& 3^{2345} & 0 \\
0 & 0 & 3^{2345}\end{pmatrix} A 2345 = ⎝ ⎛ 2 2345 0 0 0 3 2345 0 0 0 3 2345 ⎠ ⎞
Comments