As per the question,
Vm(t)=0.20sin(2×103t)+0.25sin(2×103t)=0.45sin(2×103t)V_m (t) = 0.20 \sin (2 \times 10^3 t ) + 0.25 \sin (2\times 10^3 t) =0.45\sin(2\times 10^3t)Vm(t)=0.20sin(2×103t)+0.25sin(2×103t)=0.45sin(2×103t)
Vc(t)=10sin(2π×100×106t)VVc (t) = 10 \sin (2π \times 100\times 10^6 t) VVc(t)=10sin(2π×100×106t)V
Hence, amplitude modulation,
VAM=(Vc+Vmcos(2πfmt))cos(2πfct)V_{AM}=(V_c+V_m\cos (2\pi f_m t))\cos(2\pi f_ct)VAM=(Vc+Vmcos(2πfmt))cos(2πfct)
VAM=10+0.45=10.45VV_{AM}=10+0.45=10.45VVAM=10+0.45=10.45V
band width of AM = 2(f1+f2)=(2×103+2π×100×106π)2(f_1+f_2)=(\dfrac{2\times 10^3+2\pi\times 100\times 10^6}{\pi})2(f1+f2)=(π2×103+2π×100×106)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments