Answer to Question #111960 in Electrical Engineering for Dn

Question #111960
find continued fraction expansion of the following impedance function.
z(s)=(s^5 + 4 s^3 + 5 s)/(3 s^4 + 6 s^2)
1
Expert's answer
2020-04-24T13:38:55-0400

First, let us divide x5+4x3+5xx^5 + 4 x^3 + 5 x by 3x4+6x23x^4 + 6 x^2 as usual numbers. We need to multiply 3x43x^4 by x3\frac{x}{3}, to cancel x5x^5. Subtracting x3(3x4+6x2)\frac{x}{3} \cdot (3 x^4 + 6 x^2), obtain remainder 2x3+5x2 x^3 + 5 x, so no further reduction is possible.

Hence, x5+4x3+5x=x3(3x4+6x2)+(2x3+5x)x^5 + 4 x^3 + 5 x = \frac{x}{3} \cdot ( 3 x^4 + 6 x^2) + (2 x^3 + 5 x), from where x5+4x3+5x3x4+6x2=x3+2x3+5x3x4+6x2\frac{x^5 + 4 x^3 + 5 x}{3 x^4 + 6 x^2} = \frac{x}{3} + \frac{2 x^3 + 5 x}{3 x^4 + 6 x^2}.

The remainder 2x3+5x3x4+6x2=x(5+2x2)3x2(x2+2)=135+2x2x(x2+2)\frac{2 x^3 + 5 x}{3 x^4 + 6 x^2} = \frac{x(5+2x^2)}{3x^2(x^2+2)} = \frac{1}{3}\frac{5 + 2 x^2}{x(x^2+2)} has degree of polynomial in the numerator smaller, than degree of the denominator. Hence, we can decompose it into partial fractions: 5+2x2x(x2+2)=Ax+Bx+Cx2+2=Ax2+2A+Bx2+Cxx(x2+2)\frac{5 + 2 x^2}{x(x^2+2)} = \frac{A}{x} + \frac{B x + C}{x^2+2} = \frac{A x^2 + 2 A + B x^2 + C x}{x(x^2+2)}, from where equating the coefficients next to powers of xx in the left and right hand sides of previous equation, obtain linear systemA+B=2;C=0;2A=5A+B = 2; C = 0; 2 A = 5, from where A=52,B=12,C=0A = \frac{5}{2}, B = -\frac{1}{2}, C = 0.

Therefore, 2x3+5x3x4+6x2=13[52x12(x2+2)]\frac{2 x^3 + 5 x}{3 x^4 + 6 x^2} = \frac{1}{3}\left[ \frac{5}{2 x} - \frac{1}{2(x^2+2)} \right], and finally x5+4x3+5x3x4+6x2=x3+56x16(x2+2)\frac{x^5 + 4 x^3 + 5 x}{3 x^4 + 6 x^2} = \frac{x}{3} + \frac{5}{6 x} - \frac{1}{6(x^2+2)}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment