Question #109529
Given a forward biased si diode with I = 1mA. If the diffusion capacitance is Cd =1microferad , what is the diffusion Length Lp? Assume that the doping of the P-side is much greater than that of the n-side . Use Dp = 13metersquare second.
1
Expert's answer
2020-04-19T07:39:46-0400

In this problem, we will need the following:

LpL_p - diffusion length for holes, m;

DpD_p - diffusion constant for holes, m2/s\text{m}^2/\text{s};

CDC_D - diffusion capacitance, μF;

τp\tau_p - meal life time for holes, s;

VTV_T - volt equivalent of temperature TT (26 mV for 300 K);

η=1\eta=1 for Ge and η=2\eta=2 for SI - a constant, η=I0(eV/ηVT1).\eta=I_0(e^{V/\eta V_T}-1).

The diffusion length is


Lp=(Dpτp)1/2. CD=τpIηVT, VT=T11600.L_p=(D_p\tau_p)^{1/2}.\\ \space\\ C_D=\frac{\tau_p I}{\eta V_T},\\ \space\\ V_T=\frac{T}{11600.}

Therefore, combining all this, we get

LP=DpCDηVTI= =13(1106)2(300/11600)(1103)=0.0259 m.L_P=\sqrt{\frac{D_pC_D\eta V_T}{I}}=\\ \space\\ =\sqrt{\frac{13\cdot(1\cdot10^{-6})\cdot2\cdot(300/11600)}{(1\cdot10^{-3})}}=0.0259\text{ m}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS