In this problem, we will need the following:
"L_p" - diffusion length for holes, m;
"D_p" - diffusion constant for holes, "\\text{m}^2\/\\text{s}";
"C_D" - diffusion capacitance, μF;
"\\tau_p" - meal life time for holes, s;
"V_T" - volt equivalent of temperature "T" (26 mV for 300 K);
"\\eta=1" for Ge and "\\eta=2" for SI - a constant, "\\eta=I_0(e^{V\/\\eta V_T}-1)."
The diffusion length is
Therefore, combining all this, we get
"L_P=\\sqrt{\\frac{D_pC_D\\eta V_T}{I}}=\\\\ \\space\\\\\n=\\sqrt{\\frac{13\\cdot(1\\cdot10^{-6})\\cdot2\\cdot(300\/11600)}{(1\\cdot10^{-3})}}=0.0259\\text{ m}."
Comments
Leave a comment