Find the area under the curve y=x^2 + 1 and the x-axis between x=0 and x=3. *
The area under a curve is the area between a curve f(x) and the x−axis on an interval [a, b] given byA=∫ab∣f(x)∣dx=∫03∣x2+1∣dx=12\mathrm{The\:area\:under\:a\:curve\:is\:the\:area\:between\:a\:curve}\:f\left(x\right)\:\mathrm{and\:the\:x-axis\:on\:an\:interval}\:\left[a,\:b\right]\:\mathrm{given\:by}\\ A=\int _a^b|f\left(x\right)|dx\\ =\int _0^3\left|x^2+1\right|dx\\ =12Theareaunderacurveistheareabetweenacurvef(x)andthex−axisonaninterval[a,b]givenbyA=∫ab∣f(x)∣dx=∫03∣∣x2+1∣∣dx=12
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments