Answer to Question #230353 in Civil and Environmental Engineering for syra

Question #230353
A stone is thrown downward with an initial velocity of 5m/s from a 20-meter high building. Find the time it takes to reach the ground.
1
Expert's answer
2021-08-31T01:42:55-0400

h=ut+12gt220=5t+129.8t2Multiplybothsidesby102010=5t10+129.8t21050t+49t2=200Subtract200frombothsides50t+49t2200=200200Simplify49t2+50t200=0t1,2=50±502449(200)249t1=50+10417249,t2=5010417249t=5(4175)49,t=5(5+417)49t=1.57352sh= ut + \frac{1}{2}gt^2\\ 20= 5t + \frac{1}{2}*9.8*t^2\\ \mathrm{Multiply\:both\:sides\:by\:}10\\ 20\cdot \:10=5t\cdot \:10+\frac{1}{2}\cdot \:9.8t^2\cdot \:10\\ 50t+49t^2=200\\ \mathrm{Subtract\:}200\mathrm{\:from\:both\:sides}\\ 50t+49t^2-200=200-200\\ \mathrm{Simplify}\\ 49t^2+50t-200=0\\ t_{1,\:2}=\frac{-50\pm \sqrt{50^2-4\cdot \:49\left(-200\right)}}{2\cdot \:49}\\ t_1=\frac{-50+10\sqrt{417}}{2\cdot \:49},\:t_2=\frac{-50-10\sqrt{417}}{2\cdot \:49}\\ t=\frac{5\left(\sqrt{417}-5\right)}{49},\:t=-\frac{5\left(5+\sqrt{417}\right)}{49}\\ t=1.57352 s


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment