Answer to Question #213362 in Civil and Environmental Engineering for Elisha

Question #213362

Find the complex form of the Fourier integral for the function 

f(x) = (0, x < 0

e−x, x > 0.


1
Expert's answer
2021-07-05T04:54:46-0400

From the definition of the Fourier transformation



"f(x)=\\frac{1}{\\sqrt{2\\pi}}\\int\\limits_{-\\infty}^{\\infty}F(t)e^{-itx}dt"


we obtain



"f(x)=\\int\\limits_{-1}^{0}(1+t)e^{-itx}dt+\\int\\limits_{0}^{1}(1-t)e^{-itx}dt=""=2\\int\\limits_{0}^{1}\\cos(tx)dt-2\\int\\limits_{0}^{1}t\\cos(tx)dt=2\\frac{\\sin(x)}{x}+2\\frac{1}{x^2}-2\\frac{\\cos (x)}{x^2}-2\\frac{\\sin (x)}{x}=""=2\\frac{1-\\cos(x)}{x^2}"

Answer:

"f(x)=2\\frac{1-\\cos(x)}{x^2}"

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS