Answer to Question #184946 in Civil and Environmental Engineering for John Prats

Question #184946

Determine the surface area generated by revolving the curve y=1/3 x³ over the interval (0,2), about the x-axis.


1
Expert's answer
2021-05-07T08:13:15-0400

Solution

If the curve y = f(x), a≤x≤b is rotated about the x-axis, then the surface area is given by

"A=2\\pi\\int_a^bf(x)\\sqrt{1+[f'(x)]^2}dx"

In this case f(x) = 1/3 x³, f’(x) = x2 ,a = 0, b = 2 

"A=2\\pi\\int_0^2\\frac{1}{3}x^3\\sqrt{1+x^4}dx"

Substitution y = x4 

"A=\\frac{\\pi}{6}\\int_0^{16}\\sqrt{1+y}dy=\\frac{\\pi}{9}(1+y)^{3\/2}|_0^{16}=\\frac{\\pi}{9}(17^{3\/2}-1)=24.118"

Answer

"A=\\frac{\\pi}{9}(17^{3\/2}-1)=24.118"



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS